分数を小数に変換する電卓
分数を小数に手順を追って変換
この電卓は、与えられた分数(真分数または仮分数)または帯分数を、小数(循環小数となる場合もあります)に変換し、計算手順を表示します。
Solution
Your input: convert $$$\frac{1400}{70}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{2}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\70&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&4&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$70$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-70 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Green}{0}&\phantom{0}&\phantom{2}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{70}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Green}{1}& 4 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&4&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$70$$$'s are in $$$14$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$14-70 \cdot 0 = 14 - 0= 14$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Peru}{0}&\phantom{2}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{70}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&4& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Peru}{1}&\color{Peru}{4}&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$70$$$'s are in $$$140$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$140-70 \cdot 2 = 140 - 140= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{DarkBlue}{2}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{70}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&4&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&4&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DarkBlue}{1}&\color{DarkBlue}{4}&\color{DarkBlue}{0}&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&4&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$70$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-70 \cdot 0 = 0 - 0= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&2&\color{SaddleBrown}{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{70}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&4&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&4&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&4&0&\phantom{.}\\\hline\phantom{lll}&&\color{SaddleBrown}{0}&\color{SaddleBrown}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$70$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-70 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&2&0&.&\color{Crimson}{0}\end{array}&\\\color{Magenta}{70}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&4&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&4&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&4&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&\color{Crimson}{0}&\phantom{.}&\color{Crimson}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1400}{70}=20. \overline{0}$$$
Answer: $$$\frac{1400}{70}=20.\overline{0}$$$