分数を小数に変換する電卓
分数を小数に手順を追って変換
この電卓は、与えられた分数(真分数または仮分数)または帯分数を、小数(循環小数となる場合もあります)に変換し、計算手順を表示します。
Solution
Your input: convert $$$\frac{4800}{64}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{7}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\64&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}4&8&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$64$$$'s are in $$$4$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$4-64 \cdot 0 = 4 - 0= 4$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Red}{0}&\phantom{0}&\phantom{7}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{64}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Red}{4}& 8 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&8&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$64$$$'s are in $$$48$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$48-64 \cdot 0 = 48 - 0= 48$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Blue}{0}&\phantom{7}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{64}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}4&8& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Blue}{4}&\color{Blue}{8}&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&8&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$64$$$'s are in $$$480$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$480-64 \cdot 7 = 480 - 448= 32$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{DeepPink}{7}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{64}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}4&8&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&8&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DeepPink}{4}&\color{DeepPink}{8}&\color{DeepPink}{0}&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&4&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$64$$$'s are in $$$320$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$320-64 \cdot 5 = 320 - 320= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&7&\color{Crimson}{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{64}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}4&8&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&8&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&8&0&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&4&8&\phantom{.}\\\hline\phantom{lll}&\color{Crimson}{3}&\color{Crimson}{2}&\color{Crimson}{0}&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&3&2&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$64$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-64 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&7&5&.&\color{Violet}{0}\end{array}&\\\color{Magenta}{64}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}4&8&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&8&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&8&0&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&4&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&3&2&0&\phantom{.}\\\hline\phantom{lll}&&&\color{Violet}{0}&\phantom{.}&\color{Violet}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{4800}{64}=75.0$$$
Answer: $$$\frac{4800}{64}=75.0$$$