分数を小数に変換する電卓
分数を小数に手順を追って変換
この電卓は、与えられた分数(真分数または仮分数)または帯分数を、小数(循環小数となる場合もあります)に変換し、計算手順を表示します。
Solution
Your input: convert $$$\frac{1300}{50}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{2}&\phantom{6}&\phantom{.}&\phantom{0}\end{array}&\\50&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&3&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$50$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-50 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Blue}{0}&\phantom{0}&\phantom{2}&\phantom{6}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{50}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Blue}{1}& 3 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$50$$$'s are in $$$13$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$13-50 \cdot 0 = 13 - 0= 13$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Green}{0}&\phantom{2}&\phantom{6}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{50}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{3}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$50$$$'s are in $$$130$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$130-50 \cdot 2 = 130 - 100= 30$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{Purple}{2}&\phantom{6}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{50}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{1}&\color{Purple}{3}&\color{Purple}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&\phantom{.}\\\hline\phantom{lll}&3&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$50$$$'s are in $$$300$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$300-50 \cdot 6 = 300 - 300= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&2&\color{Brown}{6}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{50}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&\phantom{.}\\\hline\phantom{lll}&\color{Brown}{3}&\color{Brown}{0}&\color{Brown}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&3&0&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$50$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-50 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&2&6&.&\color{DarkMagenta}{0}\end{array}&\\\color{Magenta}{50}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&\phantom{.}\\\hline\phantom{lll}&3&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&3&0&0&\phantom{.}\\\hline\phantom{lll}&&&\color{DarkMagenta}{0}&\phantom{.}&\color{DarkMagenta}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{1300}{50}=26.0$$$
Answer: $$$\frac{1300}{50}=26.0$$$