分数を小数に変換する電卓
分数を小数に手順を追って変換
この電卓は、与えられた分数(真分数または仮分数)または帯分数を、小数(循環小数となる場合もあります)に変換し、計算手順を表示します。
Solution
Your input: convert $$$\frac{1100}{30}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{3}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\30&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&1&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$30$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-30 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Peru}{0}&\phantom{0}&\phantom{3}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Peru}{1}& 1 \downarrow&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$30$$$'s are in $$$11$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$11-30 \cdot 0 = 11 - 0= 11$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{BlueViolet}{0}&\phantom{3}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{BlueViolet}{1}&\color{BlueViolet}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$30$$$'s are in $$$110$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$110-30 \cdot 3 = 110 - 90= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{SaddleBrown}{3}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{SaddleBrown}{1}&\color{SaddleBrown}{1}&\color{SaddleBrown}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$30$$$'s are in $$$200$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$200-30 \cdot 6 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&3&\color{Green}{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&0&\phantom{.}\\\hline\phantom{lll}&\color{Green}{2}&\color{Green}{0}&\color{Green}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$30$$$'s are in $$$200$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$200-30 \cdot 6 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&3&6&.&\color{DarkBlue}{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&\color{DarkBlue}{2}&\color{DarkBlue}{0}&\phantom{.}&\color{DarkBlue}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&2&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$30$$$'s are in $$$200$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$200-30 \cdot 6 = 200 - 180= 20$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&3&6&.&6&\color{DarkCyan}{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&\color{DarkCyan}{2}&\phantom{.}&\color{DarkCyan}{0}&\color{DarkCyan}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8&0\\\hline\phantom{lll}&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1100}{30}=36. \overline{6}$$$
Answer: $$$\frac{1100}{30}=36.\overline{6}$$$