分数を小数に変換する電卓
分数を小数に手順を追って変換
この電卓は、与えられた分数(真分数または仮分数)または帯分数を、小数(循環小数となる場合もあります)に変換し、計算手順を表示します。
Solution
Your input: convert $$$\frac{8500}{3}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{2}&\phantom{8}&\phantom{3}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}\end{array}&\\3&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}8&5&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$3$$$'s are in $$$8$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$8-3 \cdot 2 = 8 - 6= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Chocolate}{2}&\phantom{8}&\phantom{3}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Chocolate}{8}& 5 \downarrow&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}6&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$3$$$'s are in $$$25$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$25-3 \cdot 8 = 25 - 24= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}2&\color{Red}{8}&\phantom{3}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}8&5& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}6&\phantom{.}\\\hline\phantom{lll}\color{Red}{2}&\color{Red}{5}&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&4&\phantom{.}\\\hline\phantom{lll}&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$3$$$'s are in $$$10$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$10-3 \cdot 3 = 10 - 9= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}2&8&\color{DeepPink}{3}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}8&5&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}6&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&4&\phantom{.}\\\hline\phantom{lll}&\color{DeepPink}{1}&\color{DeepPink}{0}&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$3$$$'s are in $$$10$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$10-3 \cdot 3 = 10 - 9= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}2&8&3&\color{SaddleBrown}{3}&\phantom{.}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}8&5&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}6&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&4&\phantom{.}\\\hline\phantom{lll}&1&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&\phantom{.}\\\hline\phantom{lll}&&\color{SaddleBrown}{1}&\color{SaddleBrown}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&9&\phantom{.}\\\hline\phantom{lll}&&&1&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$3$$$'s are in $$$10$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$10-3 \cdot 3 = 10 - 9= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}2&8&3&3&.&\color{GoldenRod}{3}&\phantom{3}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}8&5&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}6&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&4&\phantom{.}\\\hline\phantom{lll}&1&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&9&\phantom{.}\\\hline\phantom{lll}&&&\color{GoldenRod}{1}&\phantom{.}&\color{GoldenRod}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&9\\\hline\phantom{lll}&&&&&1&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$3$$$'s are in $$$10$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$10-3 \cdot 3 = 10 - 9= 1$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}2&8&3&3&.&3&\color{Brown}{3}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}8&5&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}6&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&4&\phantom{.}\\\hline\phantom{lll}&1&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&9&\phantom{.}\\\hline\phantom{lll}&&&1&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&9\\\hline\phantom{lll}&&&&&\color{Brown}{1}&\color{Brown}{0}\\&&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&9\\\hline\phantom{lll}&&&&&&1\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{8500}{3}=2833. \overline{3}$$$
Answer: $$$\frac{8500}{3}=2833.\overline{3}$$$