分数を小数に変換する電卓
分数を小数に手順を追って変換
この電卓は、与えられた分数(真分数または仮分数)または帯分数を、小数(循環小数となる場合もあります)に変換し、計算手順を表示します。
Solution
Your input: convert $$$\frac{300}{16}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{1}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\16&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}3&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$16$$$'s are in $$$3$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$3-16 \cdot 0 = 3 - 0= 3$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Fuchsia}{0}&\phantom{1}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Fuchsia}{3}& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$16$$$'s are in $$$30$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$30-16 \cdot 1 = 30 - 16= 14$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Red}{1}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}3&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Red}{3}&\color{Red}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&6&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$16$$$'s are in $$$140$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$140-16 \cdot 8 = 140 - 128= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&\color{Green}{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}3&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&6&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{4}&\color{Green}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&2&8&\phantom{.}\\\hline\phantom{lll}&1&2&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$16$$$'s are in $$$120$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$120-16 \cdot 7 = 120 - 112= 8$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&8&.&\color{Peru}{7}&\phantom{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}3&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&6&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&2&8&\phantom{.}\\\hline\phantom{lll}&\color{Peru}{1}&\color{Peru}{2}&\phantom{.}&\color{Peru}{0}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&\phantom{.}&2\\\hline\phantom{lll}&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$16$$$'s are in $$$80$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$80-16 \cdot 5 = 80 - 80= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&8&.&7&\color{SaddleBrown}{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}3&0&0&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&6&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&2&8&\phantom{.}\\\hline\phantom{lll}&1&2&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&\phantom{.}&2\\\hline\phantom{lll}&&&&\color{SaddleBrown}{8}&\color{SaddleBrown}{0}\\&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&8&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{300}{16}=18.75$$$
Answer: $$$\frac{300}{16}=18.75$$$