分数を小数に変換する電卓

分数を小数に手順を追って変換

この電卓は、与えられた分数(真分数または仮分数)または帯分数を、小数(循環小数となる場合もあります)に変換し、計算手順を表示します。

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{100}{150}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{0}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\150&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}1&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$150$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-150 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{GoldenRod}{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{GoldenRod}{1}& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$150$$$'s are in $$$10$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$10-150 \cdot 0 = 10 - 0= 10$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{Peru}{0}&\phantom{0}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Peru}{1}&\color{Peru}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$150$$$'s are in $$$100$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$100-150 \cdot 0 = 100 - 0= 100$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{Blue}{0}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Blue}{1}&\color{Blue}{0}&\color{Blue}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$150$$$'s are in $$$1000$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$1000-150 \cdot 6 = 1000 - 900= 100$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&.&\color{Chartreuse}{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}\color{Chartreuse}{1}&\color{Chartreuse}{0}&\color{Chartreuse}{0}&\phantom{.}&\color{Chartreuse}{0}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&\phantom{.}&9&0&0\\\hline\phantom{lll}&1&0&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$150$$$'s are in $$$1000$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$1000-150 \cdot 6 = 1000 - 900= 100$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&.&6&\color{Chocolate}{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&\phantom{.}&9&0&0\\\hline\phantom{lll}&\color{Chocolate}{1}&\color{Chocolate}{0}&\phantom{.}&\color{Chocolate}{0}&\color{Chocolate}{0}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}&0\\\hline\phantom{lll}&&1&\phantom{.}&0&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$150$$$'s are in $$$1000$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$1000-150 \cdot 6 = 1000 - 900= 100$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&.&6&6&\color{Green}{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&\phantom{.}&9&0&0\\\hline\phantom{lll}&1&0&\phantom{.}&0&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}&0\\\hline\phantom{lll}&&\color{Green}{1}&\phantom{.}&\color{Green}{0}&\color{Green}{0}&\color{Green}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&9&\phantom{.}&0&0\\\hline\phantom{lll}&&&&1&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{100}{150}=0.6 \overline{6}$$$

Answer: $$$\frac{100}{150}=0.6\overline{6}$$$


Please try a new game Rotatly