分数を小数に変換する電卓
分数を小数に手順を追って変換
この電卓は、与えられた分数(真分数または仮分数)または帯分数を、小数(循環小数となる場合もあります)に変換し、計算手順を表示します。
Solution
Your input: convert $$$\frac{1100}{15}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{7}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\15&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&1&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$15$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-15 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{OrangeRed}{0}&\phantom{0}&\phantom{7}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{OrangeRed}{1}& 1 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$15$$$'s are in $$$11$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$11-15 \cdot 0 = 11 - 0= 11$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{Brown}{0}&\phantom{7}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Brown}{1}&\color{Brown}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$15$$$'s are in $$$110$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$110-15 \cdot 7 = 110 - 105= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{DeepPink}{7}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DeepPink}{1}&\color{DeepPink}{1}&\color{DeepPink}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$15$$$'s are in $$$50$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$50-15 \cdot 3 = 50 - 45= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&7&\color{DarkMagenta}{3}&\phantom{.}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&5&\phantom{.}\\\hline\phantom{lll}&&\color{DarkMagenta}{5}&\color{DarkMagenta}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&5&\phantom{.}\\\hline\phantom{lll}&&&5&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$15$$$'s are in $$$50$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$50-15 \cdot 3 = 50 - 45= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&7&3&.&\color{Chocolate}{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&5&\phantom{.}\\\hline\phantom{lll}&&&\color{Chocolate}{5}&\phantom{.}&\color{Chocolate}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&4&\phantom{.}&5\\\hline\phantom{lll}&&&&&5&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$15$$$'s are in $$$50$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$50-15 \cdot 3 = 50 - 45= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&7&3&.&3&\color{Chartreuse}{3}&\phantom{3}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&5&\phantom{.}\\\hline\phantom{lll}&&&5&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&4&\phantom{.}&5\\\hline\phantom{lll}&&&&&\color{Chartreuse}{5}&\color{Chartreuse}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&5\\\hline\phantom{lll}&&&&&&5&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$15$$$'s are in $$$50$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$50-15 \cdot 3 = 50 - 45= 5$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&7&3&.&3&3&\color{Purple}{3}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&5&\phantom{.}\\\hline\phantom{lll}&&&5&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&4&\phantom{.}&5\\\hline\phantom{lll}&&&&&5&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&5\\\hline\phantom{lll}&&&&&&\color{Purple}{5}&\color{Purple}{0}\\&&&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&5\\\hline\phantom{lll}&&&&&&&5\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1100}{15}=73.3 \overline{3}$$$
Answer: $$$\frac{1100}{15}=73.3\overline{3}$$$