分数を小数に変換する電卓

分数を小数に手順を追って変換

この電卓は、与えられた分数(真分数または仮分数)または帯分数を、小数(循環小数となる場合もあります)に変換し、計算手順を表示します。

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{800}{12}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\12&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}8&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$12$$$'s are in $$$8$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$8-12 \cdot 0 = 8 - 0= 8$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Fuchsia}{0}&\phantom{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Fuchsia}{8}& 0 \downarrow&0&.&0&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}8&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$12$$$'s are in $$$80$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$80-12 \cdot 6 = 80 - 72= 8$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{DarkCyan}{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}8&0& 0 \downarrow&.&0&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkCyan}{8}&\color{DarkCyan}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}7&2&\phantom{.}\\\hline\phantom{lll}&8&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$12$$$'s are in $$$80$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$80-12 \cdot 6 = 80 - 72= 8$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&6&\color{DarkMagenta}{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}8&0&0&.& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}7&2&\phantom{.}\\\hline\phantom{lll}&\color{DarkMagenta}{8}&\color{DarkMagenta}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&7&2&\phantom{.}\\\hline\phantom{lll}&&8&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$12$$$'s are in $$$80$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$80-12 \cdot 6 = 80 - 72= 8$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&6&6&.&\color{Crimson}{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}8&0&0&.&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}7&2&\phantom{.}\\\hline\phantom{lll}&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&7&2&\phantom{.}\\\hline\phantom{lll}&&\color{Crimson}{8}&\phantom{.}&\color{Crimson}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&\phantom{.}&2\\\hline\phantom{lll}&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$12$$$'s are in $$$80$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$80-12 \cdot 6 = 80 - 72= 8$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&6&6&.&6&\color{Peru}{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}8&0&0&.&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}7&2&\phantom{.}\\\hline\phantom{lll}&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&7&2&\phantom{.}\\\hline\phantom{lll}&&8&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&\phantom{.}&2\\\hline\phantom{lll}&&&&\color{Peru}{8}&\color{Peru}{0}\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&7&2\\\hline\phantom{lll}&&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$12$$$'s are in $$$80$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$80-12 \cdot 6 = 80 - 72= 8$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&6&6&.&6&6&\color{OrangeRed}{6}&\phantom{6}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}8&0&0&.&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}7&2&\phantom{.}\\\hline\phantom{lll}&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&7&2&\phantom{.}\\\hline\phantom{lll}&&8&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&\phantom{.}&2\\\hline\phantom{lll}&&&&8&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&7&2\\\hline\phantom{lll}&&&&&\color{OrangeRed}{8}&\color{OrangeRed}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&7&2\\\hline\phantom{lll}&&&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 7

How many $$$12$$$'s are in $$$80$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$80-12 \cdot 6 = 80 - 72= 8$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&6&6&.&6&6&6&\color{Violet}{6}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}8&0&0&.&0&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}7&2&\phantom{.}\\\hline\phantom{lll}&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&7&2&\phantom{.}\\\hline\phantom{lll}&&8&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&\phantom{.}&2\\\hline\phantom{lll}&&&&8&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&7&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&7&2\\\hline\phantom{lll}&&&&&&\color{Violet}{8}&\color{Violet}{0}\\&&&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&7&2\\\hline\phantom{lll}&&&&&&&8\end{array}&\begin{array}{c}\end{array}\end{array}$$$

As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{800}{12}=66.66 \overline{6}$$$

Answer: $$$\frac{800}{12}=66.66\overline{6}$$$


Please try a new game Rotatly