$$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right)$$$ を簡単化する

この計算機は、手順を示しながらブール式 $$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right)$$$ を簡単化します。

関連する計算機: 真理値表計算機

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

ブール式 $$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right)$$$ を簡単化してください。

解答

交換法則を適用する:

$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot {\color{red}\left(\left(X \cdot Y\right) + Z\right)}\right) = \left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot {\color{red}\left(Z + \left(X \cdot Y\right)\right)}\right)$$

吸収法則 $$$x \cdot \left(x + y\right) = x$$$$$$x = Z$$$$$$y = X \cdot Y$$$ に適用する:

$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot {\color{red}\left(Z \cdot \left(Z + \left(X \cdot Y\right)\right)\right)}\right) = \left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot {\color{red}\left(Z\right)}\right)$$

$$$x = Y$$$$$$y = Z$$$ に対してド・モルガンの法則 $$$\overline{x \cdot y} = \overline{x} + \overline{y}$$$ を適用する:

$$\left(X \cdot Y\right) + {\color{red}\left(\overline{Y \cdot Z}\right)} + \left(X \cdot \overline{Y} \cdot Z\right) = \left(X \cdot Y\right) + {\color{red}\left(\overline{Y} + \overline{Z}\right)} + \left(X \cdot \overline{Y} \cdot Z\right)$$

交換法則を適用する:

$${\color{red}\left(\left(X \cdot Y\right) + \overline{Y} + \overline{Z} + \left(X \cdot \overline{Y} \cdot Z\right)\right)} = {\color{red}\left(\left(X \cdot Y\right) + \overline{Y} + \left(X \cdot \overline{Y} \cdot Z\right) + \overline{Z}\right)}$$

交換法則を適用する:

$$\left(X \cdot Y\right) + \overline{Y} + {\color{red}\left(X \cdot \overline{Y} \cdot Z\right)} + \overline{Z} = \left(X \cdot Y\right) + \overline{Y} + {\color{red}\left(\overline{Y} \cdot X \cdot Z\right)} + \overline{Z}$$

吸収法則 $$$x + \left(x \cdot y\right) = x$$$$$$x = \overline{Y}$$$$$$y = X \cdot Z$$$ に適用する:

$$\left(X \cdot Y\right) + {\color{red}\left(\overline{Y} + \left(\overline{Y} \cdot X \cdot Z\right)\right)} + \overline{Z} = \left(X \cdot Y\right) + {\color{red}\left(\overline{Y}\right)} + \overline{Z}$$

交換法則を適用する:

$${\color{red}\left(\left(X \cdot Y\right) + \overline{Y} + \overline{Z}\right)} = {\color{red}\left(\overline{Y} + \left(X \cdot Y\right) + \overline{Z}\right)}$$

交換法則を適用する:

$$\overline{Y} + {\color{red}\left(X \cdot Y\right)} + \overline{Z} = \overline{Y} + {\color{red}\left(Y \cdot X\right)} + \overline{Z}$$

$$$x = \overline{Y}$$$$$$y = X$$$ を用いて冗長律 $$$x + \left(\overline{x} \cdot y\right) = x + y$$$ を適用せよ:

$${\color{red}\left(\overline{Y} + \left(Y \cdot X\right)\right)} + \overline{Z} = {\color{red}\left(\overline{Y} + X\right)} + \overline{Z}$$

解答

$$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right) = \overline{Y} + X + \overline{Z}$$$


Please try a new game Rotatly