偏微分計算機
偏導関数を段階的に計算する
このオンライン計算機は、関数の偏導関数を計算し、計算手順も表示します。積分の順序は任意に指定できます。
Solution
Your input: find $$$\frac{\partial}{\partial y}\left(4 x + y\right)$$$
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}{\frac{\partial}{\partial y}\left(4 x + y\right)}}={\color{red}{\left(\frac{\partial}{\partial y}\left(4 x\right) + \frac{\partial}{\partial y}\left(y\right)\right)}}$$The derivative of a constant is 0:
$${\color{red}{\frac{\partial}{\partial y}\left(4 x\right)}} + \frac{\partial}{\partial y}\left(y\right)={\color{red}{\left(0\right)}} + \frac{\partial}{\partial y}\left(y\right)$$Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial y} \left(y \right)=1$$$:
$${\color{red}{\frac{\partial}{\partial y}\left(y\right)}}={\color{red}{1}}$$Thus, $$$\frac{\partial}{\partial y}\left(4 x + y\right)=1$$$
Answer: $$$\frac{\partial}{\partial y}\left(4 x + y\right)=1$$$
Please try a new game Rotatly