$$$\frac{e^{x}}{2}$$$の積分

この計算機は、手順を示しながら$$$\frac{e^{x}}{2}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{e^{x}}{2}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = e^{x}$$$ に対して適用する:

$${\color{red}{\int{\frac{e^{x}}{2} d x}}} = {\color{red}{\left(\frac{\int{e^{x} d x}}{2}\right)}}$$

指数関数の積分は $$$\int{e^{x} d x} = e^{x}$$$です:

$$\frac{{\color{red}{\int{e^{x} d x}}}}{2} = \frac{{\color{red}{e^{x}}}}{2}$$

したがって、

$$\int{\frac{e^{x}}{2} d x} = \frac{e^{x}}{2}$$

積分定数を加える:

$$\int{\frac{e^{x}}{2} d x} = \frac{e^{x}}{2}+C$$

解答

$$$\int \frac{e^{x}}{2}\, dx = \frac{e^{x}}{2} + C$$$A


Please try a new game Rotatly