この高機能電卓は、代数、幾何学、微積分、確率・統計、線形代数、線形計画法、離散数学の問題に対応し、解法の手順を表示します。
解答
逆行列を求めるには、行列に単位行列を付加して拡大行列を作り、左側が単位行列になるように行基本変形を行います。すると、右側が逆行列になります。
したがって、行列を単位行列で拡大する:
$$$\left[\begin{array}{cc|cc}2 & 1 & 1 & 0\\1 & 3 & 0 & 1\end{array}\right]$$$
第$$$1$$$行を$$$2$$$で割る: $$$R_{1} = \frac{R_{1}}{2}$$$。
$$$\left[\begin{array}{cc|cc}1 & \frac{1}{2} & \frac{1}{2} & 0\\1 & 3 & 0 & 1\end{array}\right]$$$
第$$$2$$$行から第$$$1$$$行を引く: $$$R_{2} = R_{2} - R_{1}$$$。
$$$\left[\begin{array}{cc|cc}1 & \frac{1}{2} & \frac{1}{2} & 0\\0 & \frac{5}{2} & - \frac{1}{2} & 1\end{array}\right]$$$
第$$$2$$$行を$$$\frac{2}{5}$$$倍する: $$$R_{2} = \frac{2 R_{2}}{5}$$$.
$$$\left[\begin{array}{cc|cc}1 & \frac{1}{2} & \frac{1}{2} & 0\\0 & 1 & - \frac{1}{5} & \frac{2}{5}\end{array}\right]$$$
$$$1$$$行から$$$2$$$行の$$$\frac{1}{2}$$$倍を引く: $$$R_{1} = R_{1} - \frac{R_{2}}{2}$$$
$$$\left[\begin{array}{cc|cc}1 & 0 & \frac{3}{5} & - \frac{1}{5}\\0 & 1 & - \frac{1}{5} & \frac{2}{5}\end{array}\right]$$$
これで完了です。左側が単位行列です。右側が逆行列です。
解答
逆行列は$$$\left[\begin{array}{cc}\frac{3}{5} & - \frac{1}{5}\\- \frac{1}{5} & \frac{2}{5}\end{array}\right] = \left[\begin{array}{cc}0.6 & -0.2\\-0.2 & 0.4\end{array}\right]$$$Aです。
Please try a new game
Rotatly