Scomposizione in fattori primi di $$$3904$$$
Il tuo input
Trova la scomposizione in fattori primi di $$$3904$$$.
Soluzione
Inizia con il numero $$$2$$$.
Determina se $$$3904$$$ è divisibile per $$$2$$$.
È divisibile, dunque, dividi $$$3904$$$ per $$${\color{green}2}$$$: $$$\frac{3904}{2} = {\color{red}1952}$$$.
Determina se $$$1952$$$ è divisibile per $$$2$$$.
È divisibile, dunque, dividi $$$1952$$$ per $$${\color{green}2}$$$: $$$\frac{1952}{2} = {\color{red}976}$$$.
Determina se $$$976$$$ è divisibile per $$$2$$$.
È divisibile, dunque, dividi $$$976$$$ per $$${\color{green}2}$$$: $$$\frac{976}{2} = {\color{red}488}$$$.
Determina se $$$488$$$ è divisibile per $$$2$$$.
È divisibile, dunque, dividi $$$488$$$ per $$${\color{green}2}$$$: $$$\frac{488}{2} = {\color{red}244}$$$.
Determina se $$$244$$$ è divisibile per $$$2$$$.
È divisibile, dunque, dividi $$$244$$$ per $$${\color{green}2}$$$: $$$\frac{244}{2} = {\color{red}122}$$$.
Determina se $$$122$$$ è divisibile per $$$2$$$.
È divisibile, dunque, dividi $$$122$$$ per $$${\color{green}2}$$$: $$$\frac{122}{2} = {\color{red}61}$$$.
Il numero primo $$${\color{green}61}$$$ non ha altri divisori se non $$$1$$$ e $$${\color{green}61}$$$: $$$\frac{61}{61} = {\color{red}1}$$$.
Poiché abbiamo ottenuto $$$1$$$, abbiamo concluso.
Ora, conta semplicemente il numero di occorrenze dei divisori (numeri verdi) e scrivi la scomposizione in fattori primi: $$$3904 = 2^{6} \cdot 61$$$.
Risposta
La scomposizione in fattori primi è $$$3904 = 2^{6} \cdot 61$$$A.