Scomposizione in fattori primi di $$$2646$$$

Il calcolatore troverà la fattorizzazione in primi di $$$2646$$$, mostrando i passaggi.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova la scomposizione in fattori primi di $$$2646$$$.

Soluzione

Inizia con il numero $$$2$$$.

Determina se $$$2646$$$ è divisibile per $$$2$$$.

È divisibile, dunque, dividi $$$2646$$$ per $$${\color{green}2}$$$: $$$\frac{2646}{2} = {\color{red}1323}$$$.

Determina se $$$1323$$$ è divisibile per $$$2$$$.

Poiché non è divisibile, passa al numero primo successivo.

Il prossimo numero primo è $$$3$$$.

Determina se $$$1323$$$ è divisibile per $$$3$$$.

È divisibile, dunque, dividi $$$1323$$$ per $$${\color{green}3}$$$: $$$\frac{1323}{3} = {\color{red}441}$$$.

Determina se $$$441$$$ è divisibile per $$$3$$$.

È divisibile, dunque, dividi $$$441$$$ per $$${\color{green}3}$$$: $$$\frac{441}{3} = {\color{red}147}$$$.

Determina se $$$147$$$ è divisibile per $$$3$$$.

È divisibile, dunque, dividi $$$147$$$ per $$${\color{green}3}$$$: $$$\frac{147}{3} = {\color{red}49}$$$.

Determina se $$$49$$$ è divisibile per $$$3$$$.

Poiché non è divisibile, passa al numero primo successivo.

Il prossimo numero primo è $$$5$$$.

Determina se $$$49$$$ è divisibile per $$$5$$$.

Poiché non è divisibile, passa al numero primo successivo.

Il prossimo numero primo è $$$7$$$.

Determina se $$$49$$$ è divisibile per $$$7$$$.

È divisibile, dunque, dividi $$$49$$$ per $$${\color{green}7}$$$: $$$\frac{49}{7} = {\color{red}7}$$$.

Il numero primo $$${\color{green}7}$$$ non ha altri divisori se non $$$1$$$ e $$${\color{green}7}$$$: $$$\frac{7}{7} = {\color{red}1}$$$.

Poiché abbiamo ottenuto $$$1$$$, abbiamo concluso.

Ora, conta semplicemente il numero di occorrenze dei divisori (numeri verdi) e scrivi la scomposizione in fattori primi: $$$2646 = 2 \cdot 3^{3} \cdot 7^{2}$$$.

Risposta

La scomposizione in fattori primi è $$$2646 = 2 \cdot 3^{3} \cdot 7^{2}$$$A.


Please try a new game Rotatly