Calcolatrice da frazione a decimale
Converti le frazioni in decimali passo dopo passo
La calcolatrice convertirà la frazione data (propria o impropria) o il numero misto in un numero decimale (eventualmente periodico/ricorrente), mostrando i passaggi.
Solution
Your input: convert $$$\frac{700}{9}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{7}&\phantom{7}&\phantom{.}&\phantom{7}&\phantom{7}\end{array}&\\9&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}7&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$9$$$'s are in $$$7$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$7-9 \cdot 0 = 7 - 0= 7$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Crimson}{0}&\phantom{7}&\phantom{7}&\phantom{.}&\phantom{7}&\phantom{7}\end{array}&\\\color{Magenta}{9}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Crimson}{7}& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}7&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$9$$$'s are in $$$70$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$70-9 \cdot 7 = 70 - 63= 7$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{DarkBlue}{7}&\phantom{7}&\phantom{.}&\phantom{7}&\phantom{7}\end{array}&\\\color{Magenta}{9}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}7&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkBlue}{7}&\color{DarkBlue}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}6&3&\phantom{.}\\\hline\phantom{lll}&7&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$9$$$'s are in $$$70$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$70-9 \cdot 7 = 70 - 63= 7$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&7&\color{Green}{7}&\phantom{.}&\phantom{7}&\phantom{7}\end{array}&\\\color{Magenta}{9}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}7&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}7&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}6&3&\phantom{.}\\\hline\phantom{lll}&\color{Green}{7}&\color{Green}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&6&3&\phantom{.}\\\hline\phantom{lll}&&7&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$9$$$'s are in $$$70$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$70-9 \cdot 7 = 70 - 63= 7$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&7&7&.&\color{Chartreuse}{7}&\phantom{7}\end{array}&\\\color{Magenta}{9}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}7&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}7&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}6&3&\phantom{.}\\\hline\phantom{lll}&7&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&6&3&\phantom{.}\\\hline\phantom{lll}&&\color{Chartreuse}{7}&\phantom{.}&\color{Chartreuse}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&6&\phantom{.}&3\\\hline\phantom{lll}&&&&7&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$9$$$'s are in $$$70$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$70-9 \cdot 7 = 70 - 63= 7$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&7&7&.&7&\color{Peru}{7}\end{array}&\\\color{Magenta}{9}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}7&0&0&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}7&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}6&3&\phantom{.}\\\hline\phantom{lll}&7&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&6&3&\phantom{.}\\\hline\phantom{lll}&&7&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&6&\phantom{.}&3\\\hline\phantom{lll}&&&&\color{Peru}{7}&\color{Peru}{0}\\&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&6&3\\\hline\phantom{lll}&&&&&7\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{700}{9}=77. \overline{7}$$$
Answer: $$$\frac{700}{9}=77.\overline{7}$$$