Calcolatrice da frazione a decimale
Converti le frazioni in decimali passo dopo passo
La calcolatrice convertirà la frazione data (propria o impropria) o il numero misto in un numero decimale (eventualmente periodico/ricorrente), mostrando i passaggi.
Solution
Your input: convert $$$\frac{700}{28}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{2}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\28&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}7&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$28$$$'s are in $$$7$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$7-28 \cdot 0 = 7 - 0= 7$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\color{Peru}{0}&\phantom{2}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{28}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}\color{Peru}{7}& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}7&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$28$$$'s are in $$$70$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$70-28 \cdot 2 = 70 - 56= 14$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&\color{BlueViolet}{2}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{28}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}7&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{BlueViolet}{7}&\color{BlueViolet}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&6&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$28$$$'s are in $$$140$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$140-28 \cdot 5 = 140 - 140= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&2&\color{SaddleBrown}{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{28}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}7&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}7&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&6&\phantom{.}\\\hline\phantom{lll}\color{SaddleBrown}{1}&\color{SaddleBrown}{4}&\color{SaddleBrown}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&4&0&\phantom{.}\\\hline\phantom{lll}&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$28$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-28 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&2&5&.&\color{Green}{0}\end{array}&\\\color{Magenta}{28}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}7&0&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}7&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&6&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&4&0&\phantom{.}\\\hline\phantom{lll}&&\color{Green}{0}&\phantom{.}&\color{Green}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{700}{28}=25.0 \overline{}$$$
Answer: $$$\frac{700}{28}=25.0\overline{}$$$