Calcolatrice da frazione a decimale

Converti le frazioni in decimali passo dopo passo

La calcolatrice convertirà la frazione data (propria o impropria) o il numero misto in un numero decimale (eventualmente periodico/ricorrente), mostrando i passaggi.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{1100}{2}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{5}&\phantom{5}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\2&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&1&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$2$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-2 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Brown}{0}&\phantom{5}&\phantom{5}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{2}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Brown}{1}& 1 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$2$$$'s are in $$$11$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$11-2 \cdot 5 = 11 - 10= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{DarkMagenta}{5}&\phantom{5}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{2}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&1& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkMagenta}{1}&\color{DarkMagenta}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&\phantom{.}\\\hline\phantom{lll}&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$2$$$'s are in $$$10$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$10-2 \cdot 5 = 10 - 10= 0$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&5&\color{DarkBlue}{5}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{2}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&1&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&\phantom{.}\\\hline\phantom{lll}&\color{DarkBlue}{1}&\color{DarkBlue}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&1&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$2$$$'s are in $$$0$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$0-2 \cdot 0 = 0 - 0= 0$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&5&5&\color{Purple}{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{2}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&1&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&\phantom{.}\\\hline\phantom{lll}&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&1&0&\phantom{.}\\\hline\phantom{lll}&&\color{Purple}{0}&\color{Purple}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$2$$$'s are in $$$0$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$0-2 \cdot 0 = 0 - 0= 0$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&5&5&0&.&\color{DarkCyan}{0}\end{array}&\\\color{Magenta}{2}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&1&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&\phantom{.}\\\hline\phantom{lll}&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&1&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&\color{DarkCyan}{0}&\phantom{.}&\color{DarkCyan}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Since the remainder is $$$0$$$, then we are done.

Therefore, $$$\frac{1100}{2}=550.0$$$

Answer: $$$\frac{1100}{2}=550.0$$$


Please try a new game Rotatly