Calcolatrice da frazione a decimale
Converti le frazioni in decimali passo dopo passo
La calcolatrice convertirà la frazione data (propria o impropria) o il numero misto in un numero decimale (eventualmente periodico/ricorrente), mostrando i passaggi.
Solution
Your input: convert $$$\frac{12600}{150}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\phantom{8}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\150&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}1&2&6&0&0\end{array}}&\\&\begin{array}{lllll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$150$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-150 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Blue}{0}&\phantom{0}&\phantom{0}&\phantom{8}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Blue}{1}& 2 \downarrow&6&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$150$$$'s are in $$$12$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$12-150 \cdot 0 = 12 - 0= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{Red}{0}&\phantom{0}&\phantom{8}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&2& 6 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Red}{1}&\color{Red}{2}&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&6&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$150$$$'s are in $$$126$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$126-150 \cdot 0 = 126 - 0= 126$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{Crimson}{0}&\phantom{8}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&2&6& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Crimson}{1}&\color{Crimson}{2}&\color{Crimson}{6}&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&2&6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$150$$$'s are in $$$1260$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$1260-150 \cdot 8 = 1260 - 1200= 60$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&\color{OrangeRed}{8}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&2&6&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&6&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}\color{OrangeRed}{1}&\color{OrangeRed}{2}&\color{OrangeRed}{6}&\color{OrangeRed}{0}&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&0&0&\phantom{.}\\\hline\phantom{lll}&&6&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$150$$$'s are in $$$600$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$600-150 \cdot 4 = 600 - 600= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&8&\color{DarkMagenta}{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&2&6&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&6&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&2&6&0&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&0&0&\phantom{.}\\\hline\phantom{lll}&&\color{DarkMagenta}{6}&\color{DarkMagenta}{0}&\color{DarkMagenta}{0}&\phantom{.}\\&-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&6&0&0&\phantom{.}\\\hline\phantom{lll}&&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$150$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-150 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&8&4&.&\color{BlueViolet}{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&2&6&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&6&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&2&6&0&\phantom{.}\\-&\phantom{2}&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&0&0&\phantom{.}\\\hline\phantom{lll}&&6&0&0&\phantom{.}\\&-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&6&0&0&\phantom{.}\\\hline\phantom{lll}&&&&\color{BlueViolet}{0}&\phantom{.}&\color{BlueViolet}{0}\\&&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{12600}{150}=84.0 \overline{}$$$
Answer: $$$\frac{12600}{150}=84.0\overline{}$$$