Calcolatrice da frazione a decimale
Converti le frazioni in decimali passo dopo passo
La calcolatrice convertirà la frazione data (propria o impropria) o il numero misto in un numero decimale (eventualmente periodico/ricorrente), mostrando i passaggi.
Solution
Your input: convert $$$\frac{1200}{12}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\12&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&2&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$12$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-12 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Chartreuse}{0}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Chartreuse}{1}& 2 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$12$$$'s are in $$$12$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$12-12 \cdot 1 = 12 - 12= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Green}{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&2& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{2}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$12$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-12 \cdot 0 = 0 - 0= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&\color{Purple}{0}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&2&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&\phantom{.}\\\hline\phantom{lll}&\color{Purple}{0}&\color{Purple}{0}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$12$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-12 \cdot 0 = 0 - 0= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&0&\color{Violet}{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&2&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&\color{Violet}{0}&\color{Violet}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$12$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-12 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&0&0&.&\color{Brown}{0}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&2&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&\color{Brown}{0}&\phantom{.}&\color{Brown}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1200}{12}=100.0 \overline{}$$$
Answer: $$$\frac{1200}{12}=100.0\overline{}$$$