Integrale di $$$\frac{x}{x + 1}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{x}{x + 1}\, dx$$$.
Soluzione
Riscrivi e separa la frazione:
$${\color{red}{\int{\frac{x}{x + 1} d x}}} = {\color{red}{\int{\left(1 - \frac{1}{x + 1}\right)d x}}}$$
Integra termine per termine:
$${\color{red}{\int{\left(1 - \frac{1}{x + 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x + 1} d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$$- \int{\frac{1}{x + 1} d x} + {\color{red}{\int{1 d x}}} = - \int{\frac{1}{x + 1} d x} + {\color{red}{x}}$$
Sia $$$u=x + 1$$$.
Quindi $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.
L'integrale può essere riscritto come
$$x - {\color{red}{\int{\frac{1}{x + 1} d x}}} = x - {\color{red}{\int{\frac{1}{u} d u}}}$$
L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x - {\color{red}{\int{\frac{1}{u} d u}}} = x - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ricordiamo che $$$u=x + 1$$$:
$$x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x - \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$
Pertanto,
$$\int{\frac{x}{x + 1} d x} = x - \ln{\left(\left|{x + 1}\right| \right)}$$
Aggiungi la costante di integrazione:
$$\int{\frac{x}{x + 1} d x} = x - \ln{\left(\left|{x + 1}\right| \right)}+C$$
Risposta
$$$\int \frac{x}{x + 1}\, dx = \left(x - \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A