Integrale di $$$\cos{\left(x^{2} \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\cos{\left(x^{2} \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \cos{\left(x^{2} \right)}\, dx$$$.

Soluzione

Questo integrale (Integrale coseno di Fresnel) non ha una forma chiusa:

$${\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$

Pertanto,

$$\int{\cos{\left(x^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$

Aggiungi la costante di integrazione:

$$\int{\cos{\left(x^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}+C$$

Risposta

$$$\int \cos{\left(x^{2} \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} + C$$$A


Please try a new game Rotatly