Calcolatrice per la scomposizione in fattori di polinomi

Scomponi polinomi passo dopo passo

La calcolatrice proverà a scomporre qualsiasi polinomio (binomio, trinomio, quadratico, ecc.), mostrando i passaggi. Si usano i seguenti metodi: raccoglimento a fattor comune (fattore comune), scomposizione di polinomi quadratici, raggruppamento e ri-raggruppamento, quadrato di una somma/differenza, cubo di una somma/differenza, differenza di quadrati, somma/differenza di cubi, teorema delle radici razionali. La calcolatrice accetta sia polinomi in una variabile sia polinomi in più variabili.

Enter a polynomial:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: factor $$$\frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6}$$$.

Factor the common term:

$${\color{red}{\left(\frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6}\right)}} = {\color{red}{\frac{n}{6} \left(2 n^{2} + 3 n + 1\right)}}$$

To factor the quadratic function $$$2 n^{2} + 3 n + 1$$$, we should solve the corresponding quadratic equation $$$2 n^{2} + 3 n + 1=0$$$.

Indeed, if $$$n_1$$$ and $$$n_2$$$ are the roots of the quadratic equation $$$an^2+bn+c=0$$$, then $$$an^2+bn+c=a(n-n_1)(n-n_2)$$$.

Solve the quadratic equation $$$2 n^{2} + 3 n + 1=0$$$.

The roots are $$$n_{1} = - \frac{1}{2}$$$, $$$n_{2} = -1$$$ (use the quadratic equation calculator to see the steps).

Therefore, $$$2 n^{2} + 3 n + 1 = 2 \left(n + \frac{1}{2}\right) \left(n + 1\right)$$$.

$$\frac{n {\color{red}{\left(2 n^{2} + 3 n + 1\right)}}}{6} = \frac{n {\color{red}{\left(2 \left(n + \frac{1}{2}\right) \left(n + 1\right)\right)}}}{6}$$

Simplify: $$$\frac{n \left(n + \frac{1}{2}\right) \left(n + 1\right)}{3}=\frac{n \left(n + 1\right) \left(2 n + 1\right)}{6}$$$.

Thus, $$$\frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6}=\frac{n \left(n + 1\right) \left(2 n + 1\right)}{6}$$$.

Answer: $$$\frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6}=\frac{n \left(n + 1\right) \left(2 n + 1\right)}{6}$$$.


Please try a new game Rotatly