Varians dari $$$1$$$, $$$3$$$, $$$4$$$, $$$6$$$, $$$1$$$, $$$7$$$

Kalkulator akan menghitung varians dari $$$1$$$, $$$3$$$, $$$4$$$, $$$6$$$, $$$1$$$, $$$7$$$, dengan langkah-langkah yang ditampilkan.
Dipisahkan dengan koma.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Tentukan varians sampel dari $$$1$$$, $$$3$$$, $$$4$$$, $$$6$$$, $$$1$$$, $$$7$$$.

Solusi

Varian sampel dari data diberikan oleh rumus $$$s^{2} = \frac{\sum_{i=1}^{n} \left(x_{i} - \mu\right)^{2}}{n - 1}$$$, dengan $$$n$$$ adalah jumlah nilai, $$$x_i, i=\overline{1..n}$$$ adalah nilai-nilainya, dan $$$\mu$$$ adalah rata-rata dari nilai-nilai tersebut.

Sebenarnya, itu adalah kuadrat dari simpangan baku.

Rata-rata data adalah $$$\mu = \frac{11}{3}$$$ (untuk menghitungnya, lihat kalkulator rata-rata).

Karena kita memiliki $$$n$$$ titik, $$$n = 6$$$.

Jumlah $$$\left(x_{i} - \mu\right)^{2}$$$ adalah $$$\left(1 - \frac{11}{3}\right)^{2} + \left(3 - \frac{11}{3}\right)^{2} + \left(4 - \frac{11}{3}\right)^{2} + \left(6 - \frac{11}{3}\right)^{2} + \left(1 - \frac{11}{3}\right)^{2} + \left(7 - \frac{11}{3}\right)^{2} = \frac{94}{3}.$$$

Dengan demikian, $$$s^{2} = \frac{\sum_{i=1}^{n} \left(x_{i} - \mu\right)^{2}}{n - 1} = \frac{\frac{94}{3}}{5} = \frac{94}{15}$$$.

Jawaban

Varians sampel adalah $$$s^{2} = \frac{94}{15}\approx 6.266666666666667$$$A.


Please try a new game Rotatly