Faktorisasi prima dari $$$3294$$$
Masukan Anda
Tentukan faktorisasi prima dari $$$3294$$$.
Solusi
Mulai dengan bilangan $$$2$$$.
Tentukan apakah $$$3294$$$ habis dibagi oleh $$$2$$$.
Ini habis dibagi, maka bagi $$$3294$$$ dengan $$${\color{green}2}$$$: $$$\frac{3294}{2} = {\color{red}1647}$$$.
Tentukan apakah $$$1647$$$ habis dibagi $$$2$$$.
Karena tidak habis dibagi, lanjutkan ke bilangan prima berikutnya.
Bilangan prima berikutnya adalah $$$3$$$.
Tentukan apakah $$$1647$$$ habis dibagi $$$3$$$.
Ini habis dibagi, maka bagi $$$1647$$$ dengan $$${\color{green}3}$$$: $$$\frac{1647}{3} = {\color{red}549}$$$.
Tentukan apakah $$$549$$$ habis dibagi $$$3$$$.
Ini habis dibagi, maka bagi $$$549$$$ dengan $$${\color{green}3}$$$: $$$\frac{549}{3} = {\color{red}183}$$$.
Tentukan apakah $$$183$$$ habis dibagi $$$3$$$.
Ini habis dibagi, maka bagi $$$183$$$ dengan $$${\color{green}3}$$$: $$$\frac{183}{3} = {\color{red}61}$$$.
bilangan prima $$${\color{green}61}$$$ tidak memiliki faktor lain selain $$$1$$$ dan $$${\color{green}61}$$$: $$$\frac{61}{61} = {\color{red}1}$$$.
Karena kita telah memperoleh $$$1$$$, kita sudah selesai.
Sekarang, hitung saja berapa kali setiap pembagi (angka hijau) muncul, lalu tuliskan faktorisasi primanya: $$$3294 = 2 \cdot 3^{3} \cdot 61$$$.
Jawaban
Faktorisasi prima adalah $$$3294 = 2 \cdot 3^{3} \cdot 61$$$A.