Kalkulator Pecahan ke Desimal
Ubah pecahan menjadi desimal langkah demi langkah
Kalkulator akan mengonversi pecahan yang diberikan (benar atau tidak benar) atau bilangan campuran menjadi desimal (mungkin berulang/periodik), dengan menampilkan langkah-langkahnya.
Solution
Your input: convert $$$\frac{100}{60}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\60&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}1&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$60$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-60 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{SaddleBrown}{0}&\phantom{0}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{SaddleBrown}{1}& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$60$$$'s are in $$$10$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$10-60 \cdot 0 = 10 - 0= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{GoldenRod}{0}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{GoldenRod}{1}&\color{GoldenRod}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$60$$$'s are in $$$100$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$100-60 \cdot 1 = 100 - 60= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{Green}{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{0}&\color{Green}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&6&0&\phantom{.}\\\hline\phantom{lll}&4&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$60$$$'s are in $$$400$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$400-60 \cdot 6 = 400 - 360= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&1&.&\color{BlueViolet}{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&6&0&\phantom{.}\\\hline\phantom{lll}&\color{BlueViolet}{4}&\color{BlueViolet}{0}&\phantom{.}&\color{BlueViolet}{0}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&3&6&\phantom{.}&0\\\hline\phantom{lll}&&4&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$60$$$'s are in $$$400$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$400-60 \cdot 6 = 400 - 360= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&1&.&6&\color{DarkMagenta}{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&6&0&\phantom{.}\\\hline\phantom{lll}&4&0&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&3&6&\phantom{.}&0\\\hline\phantom{lll}&&\color{DarkMagenta}{4}&\phantom{.}&\color{DarkMagenta}{0}&\color{DarkMagenta}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&\phantom{.}&6&0\\\hline\phantom{lll}&&&&4&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$60$$$'s are in $$$400$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$400-60 \cdot 6 = 400 - 360= 40$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&1&.&6&6&\color{Brown}{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&6&0&\phantom{.}\\\hline\phantom{lll}&4&0&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&3&6&\phantom{.}&0\\\hline\phantom{lll}&&4&\phantom{.}&0&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&\phantom{.}&6&0\\\hline\phantom{lll}&&&&\color{Brown}{4}&\color{Brown}{0}&\color{Brown}{0}\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&0\\\hline\phantom{lll}&&&&&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{100}{60}=1.6 \overline{6}$$$
Answer: $$$\frac{100}{60}=1.6\overline{6}$$$