Kalkulator Pecahan ke Desimal
Ubah pecahan menjadi desimal langkah demi langkah
Kalkulator akan mengonversi pecahan yang diberikan (benar atau tidak benar) atau bilangan campuran menjadi desimal (mungkin berulang/periodik), dengan menampilkan langkah-langkahnya.
Solution
Your input: convert $$$\frac{2000}{22}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{9}&\phantom{0}&\phantom{.}&\phantom{9}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\22&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}2&0&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$22$$$'s are in $$$2$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$2-22 \cdot 0 = 2 - 0= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}\color{Peru}{0}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{.}&\phantom{9}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}\color{Peru}{2}& 0 \downarrow&0&0&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$22$$$'s are in $$$20$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$20-22 \cdot 0 = 20 - 0= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&\color{BlueViolet}{0}&\phantom{9}&\phantom{0}&\phantom{.}&\phantom{9}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&0& 0 \downarrow&0&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{BlueViolet}{2}&\color{BlueViolet}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$22$$$'s are in $$$200$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$200-22 \cdot 9 = 200 - 198= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&\color{SaddleBrown}{9}&\phantom{0}&\phantom{.}&\phantom{9}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&0&0& 0 \downarrow&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{SaddleBrown}{2}&\color{SaddleBrown}{0}&\color{SaddleBrown}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&9&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$22$$$'s are in $$$20$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$20-22 \cdot 0 = 20 - 0= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&\color{Green}{0}&\phantom{.}&\phantom{9}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&0&0&0&.& 0 \downarrow&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&9&8&\phantom{.}\\\hline\phantom{lll}&&\color{Green}{2}&\color{Green}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$22$$$'s are in $$$200$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$200-22 \cdot 9 = 200 - 198= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&0&.&\color{DarkBlue}{9}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&0&0&0&.&0& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&9&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&\color{DarkBlue}{2}&\color{DarkBlue}{0}&\phantom{.}&\color{DarkBlue}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$22$$$'s are in $$$20$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$20-22 \cdot 0 = 20 - 0= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&0&.&9&\color{DarkCyan}{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&0&0&0&.&0&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&9&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&\color{DarkCyan}{2}&\color{DarkCyan}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&0\\\hline\phantom{lll}&&&&&2&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$22$$$'s are in $$$200$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$200-22 \cdot 9 = 200 - 198= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&0&.&9&0&\color{Crimson}{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&0&0&0&.&0&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&9&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&0\\\hline\phantom{lll}&&&&&\color{Crimson}{2}&\color{Crimson}{0}&\color{Crimson}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&9&8\\\hline\phantom{lll}&&&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 8
How many $$$22$$$'s are in $$$20$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$20-22 \cdot 0 = 20 - 0= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&0&.&9&0&9&\color{DeepPink}{0}&\phantom{9}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&0&0&0&.&0&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&9&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&0\\\hline\phantom{lll}&&&&&2&0&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&9&8\\\hline\phantom{lll}&&&&&&&\color{DeepPink}{2}&\color{DeepPink}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&2&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 9
How many $$$22$$$'s are in $$$200$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$200-22 \cdot 9 = 200 - 198= 2$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&0&.&9&0&9&0&\color{Red}{9}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&0&0&0&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&9&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&0\\\hline\phantom{lll}&&&&&2&0&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&9&8\\\hline\phantom{lll}&&&&&&&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&\color{Red}{2}&\color{Red}{0}&\color{Red}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&9&8\\\hline\phantom{lll}&&&&&&&&&2\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{2000}{22}=90.9 \overline{09}$$$
Answer: $$$\frac{2000}{22}=90.9\overline{09}$$$