Kalkulator Pecahan ke Desimal
Ubah pecahan menjadi desimal langkah demi langkah
Kalkulator akan mengonversi pecahan yang diberikan (benar atau tidak benar) atau bilangan campuran menjadi desimal (mungkin berulang/periodik), dengan menampilkan langkah-langkahnya.
Solution
Your input: convert $$$\frac{1100}{14}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{7}&\phantom{8}&\phantom{.}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\14&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&1&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$14$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-14 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}\color{Peru}{0}&\phantom{0}&\phantom{7}&\phantom{8}&\phantom{.}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}\color{Peru}{1}& 1 \downarrow&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$14$$$'s are in $$$11$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$11-14 \cdot 0 = 11 - 0= 11$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&\color{BlueViolet}{0}&\phantom{7}&\phantom{8}&\phantom{.}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1& 0 \downarrow&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{BlueViolet}{1}&\color{BlueViolet}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$14$$$'s are in $$$110$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$110-14 \cdot 7 = 110 - 98= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&\color{SaddleBrown}{7}&\phantom{8}&\phantom{.}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0& 0 \downarrow&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{SaddleBrown}{1}&\color{SaddleBrown}{1}&\color{SaddleBrown}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$14$$$'s are in $$$120$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$120-14 \cdot 8 = 120 - 112= 8$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&\color{Green}{8}&\phantom{.}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.& 0 \downarrow&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&\color{Green}{1}&\color{Green}{2}&\color{Green}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$14$$$'s are in $$$80$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$80-14 \cdot 5 = 80 - 70= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&\color{DarkBlue}{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0& 0 \downarrow&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&\color{DarkBlue}{8}&\phantom{.}&\color{DarkBlue}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$14$$$'s are in $$$100$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$100-14 \cdot 7 = 100 - 98= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&\color{DarkCyan}{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0& 0 \downarrow&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&\color{DarkCyan}{1}&\phantom{.}&\color{DarkCyan}{0}&\color{DarkCyan}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$14$$$'s are in $$$20$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$20-14 \cdot 1 = 20 - 14= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&\color{Crimson}{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0& 0 \downarrow&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&\color{Crimson}{2}&\color{Crimson}{0}\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 8
How many $$$14$$$'s are in $$$60$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$60-14 \cdot 4 = 60 - 56= 4$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&1&\color{DeepPink}{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0&0& 0 \downarrow&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&\color{DeepPink}{6}&\color{DeepPink}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 9
How many $$$14$$$'s are in $$$40$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$40-14 \cdot 2 = 40 - 28= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&1&4&\color{Red}{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0&0&0& 0 \downarrow&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&\color{Red}{4}&\color{Red}{0}\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&1&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 10
How many $$$14$$$'s are in $$$120$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$120-14 \cdot 8 = 120 - 112= 8$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&1&4&2&\color{Chartreuse}{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0&0&0&0& 0 \downarrow&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&4&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&\color{Chartreuse}{1}&\color{Chartreuse}{2}&\color{Chartreuse}{0}\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 11
How many $$$14$$$'s are in $$$80$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$80-14 \cdot 5 = 80 - 70= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&1&4&2&8&\color{DarkMagenta}{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0&0&0&0&0& 0 \downarrow&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&4&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&1&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&\color{DarkMagenta}{8}&\color{DarkMagenta}{0}\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&&1&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 12
How many $$$14$$$'s are in $$$100$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$100-14 \cdot 7 = 100 - 98= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&1&4&2&8&5&\color{Brown}{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0&0&0&0&0&0& 0 \downarrow&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&4&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&1&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&8&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&&\color{Brown}{1}&\color{Brown}{0}&\color{Brown}{0}\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 13
How many $$$14$$$'s are in $$$20$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$20-14 \cdot 1 = 20 - 14= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&1&4&2&8&5&7&\color{Fuchsia}{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0&0&0&0&0&0&0& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&4&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&1&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&8&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&&1&0&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&&\color{Fuchsia}{2}&\color{Fuchsia}{0}\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 14
How many $$$14$$$'s are in $$$60$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$60-14 \cdot 4 = 60 - 56= 4$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&1&4&2&8&5&7&1&\color{GoldenRod}{4}&\phantom{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0&0&0&0&0&0&0&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&4&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&1&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&8&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&&1&0&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&&2&0\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&&\color{GoldenRod}{6}&\color{GoldenRod}{0}\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&&&&&&&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 15
How many $$$14$$$'s are in $$$40$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$40-14 \cdot 2 = 40 - 28= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&1&4&2&8&5&7&1&4&\color{Purple}{2}&\phantom{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0&0&0&0&0&0&0&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&4&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&1&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&8&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&&1&0&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&&2&0\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&&6&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&&&&&&&\color{Purple}{4}&\color{Purple}{0}\\&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&&&&&&&1&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 16
How many $$$14$$$'s are in $$$120$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$120-14 \cdot 8 = 120 - 112= 8$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&1&4&2&8&5&7&1&4&2&\color{Blue}{8}&\phantom{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&4&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&1&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&8&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&&1&0&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&&2&0\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&&6&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&&&&&&&4&0\\&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&&&&&&&\color{Blue}{1}&\color{Blue}{2}&\color{Blue}{0}\\&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&&&&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 17
How many $$$14$$$'s are in $$$80$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$80-14 \cdot 5 = 80 - 70= 10$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&7&8&.&5&7&1&4&2&8&5&7&1&4&2&8&\color{OrangeRed}{5}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&1&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&1&2&\phantom{.}\\\hline\phantom{lll}&&&8&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&7&\phantom{.}&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&8\\\hline\phantom{lll}&&&&&&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4\\\hline\phantom{lll}&&&&&&&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&4&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&1&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&8&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&&1&0&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&&2&0\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&&6&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&&&&&&&4&0\\&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&&&&&&&1&2&0\\&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&&&&&&&\color{OrangeRed}{8}&\color{OrangeRed}{0}\\&&&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&&&&&&&&1&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1100}{14}=78.5 \overline{714285}$$$
Answer: $$$\frac{1100}{14}=78.5\overline{714285}$$$