Sederhanakan $$$\overline{\overline{A \cdot B} + \left(\overline{D} \cdot A\right)}$$$

Kalkulator akan menyederhanakan ekspresi Boolean $$$\overline{\overline{A \cdot B} + \left(\overline{D} \cdot A\right)}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Tabel Kebenaran

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Sederhanakan ekspresi Boolean $$$\overline{\overline{A \cdot B} + \left(\overline{D} \cdot A\right)}$$$.

Solusi

Terapkan teorema De Morgan $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ pada $$$x = \overline{A \cdot B}$$$ dan $$$y = \overline{D} \cdot A$$$:

$${\color{red}\left(\overline{\overline{A \cdot B} + \left(\overline{D} \cdot A\right)}\right)} = {\color{red}\left(\overline{\overline{A \cdot B}} \cdot \overline{\overline{D} \cdot A}\right)}$$

Terapkan hukum negasi ganda (involusi) $$$\overline{\overline{x}} = x$$$ pada $$$x = A \cdot B$$$:

$${\color{red}\left(\overline{\overline{A \cdot B}}\right)} \cdot \overline{\overline{D} \cdot A} = {\color{red}\left(A \cdot B\right)} \cdot \overline{\overline{D} \cdot A}$$

Terapkan teorema De Morgan $$$\overline{x \cdot y} = \overline{x} + \overline{y}$$$ pada $$$x = \overline{D}$$$ dan $$$y = A$$$:

$$A \cdot B \cdot {\color{red}\left(\overline{\overline{D} \cdot A}\right)} = A \cdot B \cdot {\color{red}\left(\overline{\overline{D}} + \overline{A}\right)}$$

Terapkan hukum negasi ganda (involusi) $$$\overline{\overline{x}} = x$$$ pada $$$x = D$$$:

$$A \cdot B \cdot \left({\color{red}\left(\overline{\overline{D}}\right)} + \overline{A}\right) = A \cdot B \cdot \left({\color{red}\left(D\right)} + \overline{A}\right)$$

Terapkan hukum komutatif:

$${\color{red}\left(A \cdot B \cdot \left(D + \overline{A}\right)\right)} = {\color{red}\left(A \cdot \left(D + \overline{A}\right) \cdot B\right)}$$

Terapkan hukum komutatif:

$$A \cdot {\color{red}\left(D + \overline{A}\right)} \cdot B = A \cdot {\color{red}\left(\overline{A} + D\right)} \cdot B$$

Terapkan hukum redundansi $$$x \cdot \left(\overline{x} + y\right) = x \cdot y$$$ dengan $$$x = A$$$ dan $$$y = D$$$:

$${\color{red}\left(A \cdot \left(\overline{A} + D\right)\right)} \cdot B = {\color{red}\left(A \cdot D\right)} \cdot B$$

Jawaban

$$$\overline{\overline{A \cdot B} + \left(\overline{D} \cdot A\right)} = A \cdot D \cdot B$$$


Please try a new game Rotatly