Sederhanakan $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$

Kalkulator akan menyederhanakan ekspresi Boolean $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Tabel Kebenaran

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Sederhanakan ekspresi Boolean $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$.

Solusi

Terapkan teorema De Morgan $$$\overline{x \cdot y} = \overline{x} + \overline{y}$$$ pada $$$x = \overline{A} + B$$$ dan $$$y = \overline{B} + C$$$:

$${\color{red}\left(\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}\right)} = {\color{red}\left(\overline{\overline{A} + B} + \overline{\overline{B} + C}\right)}$$

Terapkan teorema De Morgan $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ pada $$$x = \overline{A}$$$ dan $$$y = B$$$:

$${\color{red}\left(\overline{\overline{A} + B}\right)} + \overline{\overline{B} + C} = {\color{red}\left(\overline{\overline{A}} \cdot \overline{B}\right)} + \overline{\overline{B} + C}$$

Terapkan hukum negasi ganda (involusi) $$$\overline{\overline{x}} = x$$$ pada $$$x = A$$$:

$$\left({\color{red}\left(\overline{\overline{A}}\right)} \cdot \overline{B}\right) + \overline{\overline{B} + C} = \left({\color{red}\left(A\right)} \cdot \overline{B}\right) + \overline{\overline{B} + C}$$

Terapkan teorema De Morgan $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ pada $$$x = \overline{B}$$$ dan $$$y = C$$$:

$$\left(A \cdot \overline{B}\right) + {\color{red}\left(\overline{\overline{B} + C}\right)} = \left(A \cdot \overline{B}\right) + {\color{red}\left(\overline{\overline{B}} \cdot \overline{C}\right)}$$

Terapkan hukum negasi ganda (involusi) $$$\overline{\overline{x}} = x$$$ pada $$$x = B$$$:

$$\left(A \cdot \overline{B}\right) + \left({\color{red}\left(\overline{\overline{B}}\right)} \cdot \overline{C}\right) = \left(A \cdot \overline{B}\right) + \left({\color{red}\left(B\right)} \cdot \overline{C}\right)$$

Jawaban

$$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)} = \left(A \cdot \overline{B}\right) + \left(B \cdot \overline{C}\right)$$$


Please try a new game Rotatly