Kalkulator Turunan Parsial

Hitung turunan parsial langkah demi langkah

Kalkulator online ini akan menghitung turunan parsial dari fungsi, beserta langkah-langkahnya. Anda dapat menentukan urutan integrasi apa pun.

Enter a function:

Enter the order of integration:

Hint: type x^2,y to calculate `(partial^3 f)/(partial x^2 partial y)`, or enter x,y^2,x to find `(partial^4 f)/(partial x partial y^2 partial x)`.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\frac{\partial^{2}}{\partial x \partial y}\left(x^{3} + 4 x y^{2} + 5 y^{3} - 10\right)$$$

First, find $$$\frac{\partial}{\partial x}\left(x^{3} + 4 x y^{2} + 5 y^{3} - 10\right)$$$

The derivative of a sum/difference is the sum/difference of derivatives:

$${\color{red}{\frac{\partial}{\partial x}\left(x^{3} + 4 x y^{2} + 5 y^{3} - 10\right)}}={\color{red}{\left(- \frac{\partial}{\partial x}\left(10\right) + \frac{\partial}{\partial x}\left(x^{3}\right) + \frac{\partial}{\partial x}\left(5 y^{3}\right) + \frac{\partial}{\partial x}\left(4 x y^{2}\right)\right)}}$$

Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=4 y^{2}$$$ and $$$f=x$$$:

$${\color{red}{\frac{\partial}{\partial x}\left(4 x y^{2}\right)}} - \frac{\partial}{\partial x}\left(10\right) + \frac{\partial}{\partial x}\left(x^{3}\right) + \frac{\partial}{\partial x}\left(5 y^{3}\right)={\color{red}{4 y^{2} \frac{\partial}{\partial x}\left(x\right)}} - \frac{\partial}{\partial x}\left(10\right) + \frac{\partial}{\partial x}\left(x^{3}\right) + \frac{\partial}{\partial x}\left(5 y^{3}\right)$$

Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial x} \left(x \right)=1$$$:

$$4 y^{2} {\color{red}{\frac{\partial}{\partial x}\left(x\right)}} - \frac{\partial}{\partial x}\left(10\right) + \frac{\partial}{\partial x}\left(x^{3}\right) + \frac{\partial}{\partial x}\left(5 y^{3}\right)=4 y^{2} {\color{red}{1}} - \frac{\partial}{\partial x}\left(10\right) + \frac{\partial}{\partial x}\left(x^{3}\right) + \frac{\partial}{\partial x}\left(5 y^{3}\right)$$

The derivative of a constant is 0:

$$4 y^{2} - {\color{red}{\frac{\partial}{\partial x}\left(10\right)}} + \frac{\partial}{\partial x}\left(x^{3}\right) + \frac{\partial}{\partial x}\left(5 y^{3}\right)=4 y^{2} - {\color{red}{\left(0\right)}} + \frac{\partial}{\partial x}\left(x^{3}\right) + \frac{\partial}{\partial x}\left(5 y^{3}\right)$$

Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=3$$$:

$$4 y^{2} + {\color{red}{\frac{\partial}{\partial x}\left(x^{3}\right)}} + \frac{\partial}{\partial x}\left(5 y^{3}\right)=4 y^{2} + {\color{red}{\left(3 x^{-1 + 3}\right)}} + \frac{\partial}{\partial x}\left(5 y^{3}\right)=3 x^{2} + 4 y^{2} + \frac{\partial}{\partial x}\left(5 y^{3}\right)$$

The derivative of a constant is 0:

$$3 x^{2} + 4 y^{2} + {\color{red}{\frac{\partial}{\partial x}\left(5 y^{3}\right)}}=3 x^{2} + 4 y^{2} + {\color{red}{\left(0\right)}}$$

Thus, $$$\frac{\partial}{\partial x}\left(x^{3} + 4 x y^{2} + 5 y^{3} - 10\right)=3 x^{2} + 4 y^{2}$$$

Next, $$$\frac{\partial^{2}}{\partial x \partial y}\left(x^{3} + 4 x y^{2} + 5 y^{3} - 10\right)=\frac{\partial}{\partial y} \left(\frac{\partial}{\partial x}\left(x^{3} + 4 x y^{2} + 5 y^{3} - 10\right) \right)=\frac{\partial}{\partial y}\left(3 x^{2} + 4 y^{2}\right)$$$

The derivative of a sum/difference is the sum/difference of derivatives:

$${\color{red}{\frac{\partial}{\partial y}\left(3 x^{2} + 4 y^{2}\right)}}={\color{red}{\left(\frac{\partial}{\partial y}\left(3 x^{2}\right) + \frac{\partial}{\partial y}\left(4 y^{2}\right)\right)}}$$

Apply the constant multiple rule $$$\frac{\partial}{\partial y} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial y} \left(f \right)$$$ with $$$c=4$$$ and $$$f=y^{2}$$$:

$${\color{red}{\frac{\partial}{\partial y}\left(4 y^{2}\right)}} + \frac{\partial}{\partial y}\left(3 x^{2}\right)={\color{red}{\left(4 \frac{\partial}{\partial y}\left(y^{2}\right)\right)}} + \frac{\partial}{\partial y}\left(3 x^{2}\right)$$

Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=2$$$:

$$4 {\color{red}{\frac{\partial}{\partial y}\left(y^{2}\right)}} + \frac{\partial}{\partial y}\left(3 x^{2}\right)=4 {\color{red}{\left(2 y^{-1 + 2}\right)}} + \frac{\partial}{\partial y}\left(3 x^{2}\right)=8 y + \frac{\partial}{\partial y}\left(3 x^{2}\right)$$

The derivative of a constant is 0:

$$8 y + {\color{red}{\frac{\partial}{\partial y}\left(3 x^{2}\right)}}=8 y + {\color{red}{\left(0\right)}}$$

Thus, $$$\frac{\partial}{\partial y}\left(3 x^{2} + 4 y^{2}\right)=8 y$$$

Therefore, $$$\frac{\partial^{2}}{\partial x \partial y}\left(x^{3} + 4 x y^{2} + 5 y^{3} - 10\right)=8 y$$$

Answer: $$$\frac{\partial^{2}}{\partial x \partial y}\left(x^{3} + 4 x y^{2} + 5 y^{3} - 10\right)=8 y$$$


Please try a new game Rotatly