Kalkulator Turunan Parsial
Hitung turunan parsial langkah demi langkah
Kalkulator online ini akan menghitung turunan parsial dari fungsi, beserta langkah-langkahnya. Anda dapat menentukan urutan integrasi apa pun.
Solution
Your input: find $$$\frac{\partial^{2}}{\partial x^{2}}\left(x^{2} y^{2}\right)$$$
First, find $$$\frac{\partial}{\partial x}\left(x^{2} y^{2}\right)$$$
Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=y^{2}$$$ and $$$f=x^{2}$$$:
$${\color{red}{\frac{\partial}{\partial x}\left(x^{2} y^{2}\right)}}={\color{red}{y^{2} \frac{\partial}{\partial x}\left(x^{2}\right)}}$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=2$$$:
$$y^{2} {\color{red}{\frac{\partial}{\partial x}\left(x^{2}\right)}}=y^{2} {\color{red}{\left(2 x^{-1 + 2}\right)}}=2 x y^{2}$$Thus, $$$\frac{\partial}{\partial x}\left(x^{2} y^{2}\right)=2 x y^{2}$$$
Next, $$$\frac{\partial^{2}}{\partial x^{2}}\left(x^{2} y^{2}\right)=\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\left(x^{2} y^{2}\right) \right)=\frac{\partial}{\partial x}\left(2 x y^{2}\right)$$$
Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=2 y^{2}$$$ and $$$f=x$$$:
$${\color{red}{\frac{\partial}{\partial x}\left(2 x y^{2}\right)}}={\color{red}{2 y^{2} \frac{\partial}{\partial x}\left(x\right)}}$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial x} \left(x \right)=1$$$:
$$2 y^{2} {\color{red}{\frac{\partial}{\partial x}\left(x\right)}}=2 y^{2} {\color{red}{1}}$$Thus, $$$\frac{\partial}{\partial x}\left(2 x y^{2}\right)=2 y^{2}$$$
Therefore, $$$\frac{\partial^{2}}{\partial x^{2}}\left(x^{2} y^{2}\right)=2 y^{2}$$$
Answer: $$$\frac{\partial^{2}}{\partial x^{2}}\left(x^{2} y^{2}\right)=2 y^{2}$$$