Integral dari $$$\cos^{3}{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \cos^{3}{\left(x \right)}\, dx$$$.
Solusi
Keluarkan satu kosinus dan nyatakan sisanya dalam bentuk sinus, menggunakan rumus $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ dengan $$$\alpha=x$$$:
$${\color{red}{\int{\cos^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} d x}}}$$
Misalkan $$$u=\sin{\left(x \right)}$$$.
Kemudian $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\cos{\left(x \right)} dx = du$$$.
Integral tersebut dapat ditulis ulang sebagai
$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - u^{2}\right)d u}}}$$
Integralkan suku demi suku:
$${\color{red}{\int{\left(1 - u^{2}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:
$$- \int{u^{2} d u} + {\color{red}{\int{1 d u}}} = - \int{u^{2} d u} + {\color{red}{u}}$$
Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:
$$u - {\color{red}{\int{u^{2} d u}}}=u - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Ingat bahwa $$$u=\sin{\left(x \right)}$$$:
$${\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} = {\color{red}{\sin{\left(x \right)}}} - \frac{{\color{red}{\sin{\left(x \right)}}}^{3}}{3}$$
Oleh karena itu,
$$\int{\cos^{3}{\left(x \right)} d x} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\cos^{3}{\left(x \right)} d x} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}+C$$
Jawaban
$$$\int \cos^{3}{\left(x \right)}\, dx = \left(- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}\right) + C$$$A