Integral dari $$$\frac{1}{x^{2} - 1}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{x^{2} - 1}\, dx$$$.
Solusi
Lakukan dekomposisi pecahan parsial (langkah-langkah dapat dilihat di »):
$${\color{red}{\int{\frac{1}{x^{2} - 1} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$
Integralkan suku demi suku:
$${\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{2 \left(x - 1\right)} d x} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:
$$- \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = - \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$
Misalkan $$$u=x - 1$$$.
Kemudian $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = du$$$.
Integral tersebut dapat ditulis ulang sebagai
$$- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = - \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Ingat bahwa $$$u=x - 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x + 1\right)} d x} = \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x + 1\right)} d x}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:
$$\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$
Misalkan $$$u=x + 1$$$.
Kemudian $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = du$$$.
Oleh karena itu,
$$\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Ingat bahwa $$$u=x + 1$$$:
$$\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2}$$
Oleh karena itu,
$$\int{\frac{1}{x^{2} - 1} d x} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{x^{2} - 1} d x} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}+C$$
Jawaban
$$$\int \frac{1}{x^{2} - 1}\, dx = \left(\frac{\ln\left(\left|{x - 1}\right|\right)}{2} - \frac{\ln\left(\left|{x + 1}\right|\right)}{2}\right) + C$$$A