Bentuk polar dari $$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$

Kalkulator akan menemukan bentuk polar dari bilangan kompleks $$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$, dengan menampilkan langkah-langkahnya.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan bentuk polar dari $$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$.

Solusi

Bentuk standar dari bilangan kompleks tersebut adalah $$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$.

Untuk suatu bilangan kompleks $$$a + b i$$$, bentuk kutub diberikan oleh $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$, di mana $$$r = \sqrt{a^{2} + b^{2}}$$$ dan $$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$.

Kita peroleh bahwa $$$a = - \frac{1}{2}$$$ dan $$$b = - \frac{\sqrt{3}}{2}$$$.

Dengan demikian, $$$r = \sqrt{\left(- \frac{1}{2}\right)^{2} + \left(- \frac{\sqrt{3}}{2}\right)^{2}} = 1$$$.

Selain itu, $$$\theta = \operatorname{atan}{\left(\frac{- \frac{\sqrt{3}}{2}}{- \frac{1}{2}} \right)} - \pi = - \frac{2 \pi}{3}$$$.

Oleh karena itu, $$$- \frac{1}{2} - \frac{\sqrt{3} i}{2} = \cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)}$$$.

Jawaban

$$$- \frac{1}{2} - \frac{\sqrt{3} i}{2} = \cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)} = \cos{\left(-120^{\circ} \right)} + i \sin{\left(-120^{\circ} \right)}$$$A


Please try a new game Rotatly