Kalkulator Penguraian Pecahan Parsial

Temukan dekomposisi pecahan parsial langkah demi langkah

Kalkulator daring ini akan menentukan dekomposisi pecahan parsial dari fungsi rasional, beserta langkah-langkahnya.

Enter the numerator:

Enter the denominator:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: perform the partial fraction decomposition of $$$\frac{1}{u \left(u - 1\right)}$$$

The form of the partial fraction decomposition is

$$\frac{1}{u \left(u - 1\right)}=\frac{A}{u}+\frac{B}{u - 1}$$

Write the right-hand side as a single fraction:

$$\frac{1}{u \left(u - 1\right)}=\frac{u B + \left(u - 1\right) A}{u \left(u - 1\right)}$$

The denominators are equal, so we require the equality of the numerators:

$$1=u B + \left(u - 1\right) A$$

Expand the right-hand side:

$$1=u A + u B - A$$

Collect up the like terms:

$$1=u \left(A + B\right) - A$$

The coefficients near the like terms should be equal, so the following system is obtained:

$$\begin{cases} A + B = 0\\- A = 1 \end{cases}$$

Solving it (for steps, see system of equations calculator), we get that $$$A=-1$$$, $$$B=1$$$

Therefore,

$$\frac{1}{u \left(u - 1\right)}=\frac{-1}{u}+\frac{1}{u - 1}$$

Answer: $$$\frac{1}{u \left(u - 1\right)}=\frac{-1}{u}+\frac{1}{u - 1}$$$


Please try a new game Rotatly