Calculatrice de dérivées partielles
Calculez les dérivées partielles étape par étape
Cette calculatrice en ligne calculera la dérivée partielle de la fonction, avec les étapes détaillées. Vous pouvez spécifier n'importe quel ordre d'intégration.
Solution
Your input: find $$$\frac{\partial}{\partial x}\left(x^{2} + y^{2} + z^{2} - 14\right)$$$
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}{\frac{\partial}{\partial x}\left(x^{2} + y^{2} + z^{2} - 14\right)}}={\color{red}{\left(- \frac{\partial}{\partial x}\left(14\right) + \frac{\partial}{\partial x}\left(x^{2}\right) + \frac{\partial}{\partial x}\left(y^{2}\right) + \frac{\partial}{\partial x}\left(z^{2}\right)\right)}}$$The derivative of a constant is 0:
$${\color{red}{\frac{\partial}{\partial x}\left(z^{2}\right)}} - \frac{\partial}{\partial x}\left(14\right) + \frac{\partial}{\partial x}\left(x^{2}\right) + \frac{\partial}{\partial x}\left(y^{2}\right)={\color{red}{\left(0\right)}} - \frac{\partial}{\partial x}\left(14\right) + \frac{\partial}{\partial x}\left(x^{2}\right) + \frac{\partial}{\partial x}\left(y^{2}\right)$$The derivative of a constant is 0:
$$- {\color{red}{\frac{\partial}{\partial x}\left(14\right)}} + \frac{\partial}{\partial x}\left(x^{2}\right) + \frac{\partial}{\partial x}\left(y^{2}\right)=- {\color{red}{\left(0\right)}} + \frac{\partial}{\partial x}\left(x^{2}\right) + \frac{\partial}{\partial x}\left(y^{2}\right)$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=2$$$:
$${\color{red}{\frac{\partial}{\partial x}\left(x^{2}\right)}} + \frac{\partial}{\partial x}\left(y^{2}\right)={\color{red}{\left(2 x^{-1 + 2}\right)}} + \frac{\partial}{\partial x}\left(y^{2}\right)=2 x + \frac{\partial}{\partial x}\left(y^{2}\right)$$The derivative of a constant is 0:
$$2 x + {\color{red}{\frac{\partial}{\partial x}\left(y^{2}\right)}}=2 x + {\color{red}{\left(0\right)}}$$Thus, $$$\frac{\partial}{\partial x}\left(x^{2} + y^{2} + z^{2} - 14\right)=2 x$$$
Answer: $$$\frac{\partial}{\partial x}\left(x^{2} + y^{2} + z^{2} - 14\right)=2 x$$$
Please try a new game Rotatly