Calculatrice de dérivées partielles

Calculez les dérivées partielles étape par étape

Cette calculatrice en ligne calculera la dérivée partielle de la fonction, avec les étapes détaillées. Vous pouvez spécifier n'importe quel ordre d'intégration.

Enter a function:

Enter the order of integration:

Hint: type x^2,y to calculate `(partial^3 f)/(partial x^2 partial y)`, or enter x,y^2,x to find `(partial^4 f)/(partial x partial y^2 partial x)`.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\frac{\partial}{\partial x}\left(e^{x y}\right)$$$

Write the function $$$e^{x y}$$$ as a composition of the two functions $$$u=g=x y$$$ and $$$f\left(u\right)=e^{u}$$$.

Apply the chain rule $$$\frac{\partial}{\partial x} \left(f\left(g\right) \right)=\frac{\partial}{\partial u} \left(f\left(u\right) \right) \cdot \frac{\partial}{\partial x} \left(g \right)$$$:

$${\color{red}{\frac{\partial}{\partial x}\left(e^{x y}\right)}}={\color{red}{\frac{\partial}{\partial u}\left(e^{u}\right) \frac{\partial}{\partial x}\left(x y\right)}}$$

The derivative of an exponential is $$$\frac{\partial}{\partial u} \left(e^{u} \right)=e^{u}$$$:

$${\color{red}{\frac{\partial}{\partial u}\left(e^{u}\right)}} \frac{\partial}{\partial x}\left(x y\right)={\color{red}{e^{u}}} \frac{\partial}{\partial x}\left(x y\right)$$

Return to the old variable:

$$e^{{\color{red}{u}}} \frac{\partial}{\partial x}\left(x y\right)=e^{{\color{red}{x y}}} \frac{\partial}{\partial x}\left(x y\right)$$

Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=y$$$ and $$$f=x$$$:

$$e^{x y} {\color{red}{\frac{\partial}{\partial x}\left(x y\right)}}=e^{x y} {\color{red}{y \frac{\partial}{\partial x}\left(x\right)}}$$

Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial x} \left(x \right)=1$$$:

$$y e^{x y} {\color{red}{\frac{\partial}{\partial x}\left(x\right)}}=y e^{x y} {\color{red}{1}}$$

Thus, $$$\frac{\partial}{\partial x}\left(e^{x y}\right)=y e^{x y}$$$

Answer: $$$\frac{\partial}{\partial x}\left(e^{x y}\right)=y e^{x y}$$$


Please try a new game Rotatly