Intégrale de $$$\cos{\left(x^{2} \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \cos{\left(x^{2} \right)}\, dx$$$.
Solution
Cette intégrale (Intégrale cosinus de Fresnel) n’admet pas de forme fermée :
$${\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Par conséquent,
$$\int{\cos{\left(x^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$
Ajouter la constante d'intégration :
$$\int{\cos{\left(x^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}+C$$
Réponse
$$$\int \cos{\left(x^{2} \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} + C$$$A