Funktion $$$\cos{\left(x^{2} \right)}$$$ integraali

Laskin löytää funktion $$$\cos{\left(x^{2} \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \cos{\left(x^{2} \right)}\, dx$$$.

Ratkaisu

Tällä integraalilla (Fresnelin kosini-integraali) ei ole suljettua muotoa:

$${\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$

Näin ollen,

$$\int{\cos{\left(x^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$

Lisää integrointivakio:

$$\int{\cos{\left(x^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}+C$$

Vastaus

$$$\int \cos{\left(x^{2} \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} + C$$$A


Please try a new game Rotatly