Funktion $$$- \frac{1}{x}$$$ integraali

Laskin löytää funktion $$$- \frac{1}{x}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(- \frac{1}{x}\right)\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(x \right)} = \frac{1}{x}$$$:

$${\color{red}{\int{\left(- \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x} d x}\right)}}$$

Funktion $$$\frac{1}{x}$$$ integraali on $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$- {\color{red}{\int{\frac{1}{x} d x}}} = - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Näin ollen,

$$\int{\left(- \frac{1}{x}\right)d x} = - \ln{\left(\left|{x}\right| \right)}$$

Lisää integrointivakio:

$$\int{\left(- \frac{1}{x}\right)d x} = - \ln{\left(\left|{x}\right| \right)}+C$$

Vastaus

$$$\int \left(- \frac{1}{x}\right)\, dx = - \ln\left(\left|{x}\right|\right) + C$$$A


Please try a new game Rotatly