Halle $$$P{\left(X = 3 \right)}$$$ para la distribución geométrica con $$$n = 3$$$ y $$$p = 0.2$$$

La calculadora calculará la probabilidad de que $$$X = 3$$$ para la distribución geométrica con $$$n = 3$$$ y $$$p = 0.2$$$.

Calculadora relacionada: Calculadora de distribución exponencial

Existen dos tipos de distribuciones geométricas: o bien $$$X$$$ es el número de ensayos hasta e incluyendo el primer éxito, o bien $$$X$$$ es el número de ensayos (fracasos) hasta el primer éxito.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Calcule los distintos valores de la distribución geométrica con $$$n = 3$$$ y $$$p = 0.2 = \frac{1}{5}$$$ (sin incluir el ensayo de éxito).

Respuesta

Media: $$$\mu = \frac{1 - p}{p} = \frac{1 - \frac{1}{5}}{\frac{1}{5}} = 4$$$A.

Varianza: $$$\sigma^{2} = \frac{1 - p}{p^{2}} = \frac{1 - \frac{1}{5}}{\left(\frac{1}{5}\right)^{2}} = 20$$$A.

Desviación estándar: $$$\sigma = \sqrt{\frac{1 - p}{p^{2}}} = \sqrt{\frac{1 - \frac{1}{5}}{\left(\frac{1}{5}\right)^{2}}} = 2 \sqrt{5}\approx 4.472135954999579.$$$A

$$$P{\left(X = 3 \right)} = 0.1024$$$A

$$$P{\left(X \lt 3 \right)} = 0.488$$$A

$$$P{\left(X \leq 3 \right)} = 0.5904$$$A

$$$P{\left(X \gt 3 \right)} = 0.4096$$$A

$$$P{\left(X \geq 3 \right)} = 0.512$$$A


Please try a new game Rotatly