Factorización prima de $$$3500$$$
Tu aportación
Encuentre la descomposición en factores primos de $$$3500$$$.
Solución
Comience con el número $$$2$$$.
Determina si $$$3500$$$ es divisible por $$$2$$$.
Es divisible, por lo tanto, divide $$$3500$$$ entre $$${\color{green}2}$$$: $$$\frac{3500}{2} = {\color{red}1750}$$$.
Determina si $$$1750$$$ es divisible por $$$2$$$.
Es divisible, por lo tanto, divide $$$1750$$$ entre $$${\color{green}2}$$$: $$$\frac{1750}{2} = {\color{red}875}$$$.
Determina si $$$875$$$ es divisible por $$$2$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$3$$$.
Determina si $$$875$$$ es divisible por $$$3$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$5$$$.
Determina si $$$875$$$ es divisible por $$$5$$$.
Es divisible, por lo tanto, divide $$$875$$$ entre $$${\color{green}5}$$$: $$$\frac{875}{5} = {\color{red}175}$$$.
Determina si $$$175$$$ es divisible por $$$5$$$.
Es divisible, por lo tanto, divide $$$175$$$ entre $$${\color{green}5}$$$: $$$\frac{175}{5} = {\color{red}35}$$$.
Determina si $$$35$$$ es divisible por $$$5$$$.
Es divisible, por lo tanto, divide $$$35$$$ entre $$${\color{green}5}$$$: $$$\frac{35}{5} = {\color{red}7}$$$.
El número primo $$${\color{green}7}$$$ no tiene otros factores que $$$1$$$ y $$${\color{green}7}$$$: $$$\frac{7}{7} = {\color{red}1}$$$.
Ya que hemos obtenido $$$1$$$, hemos terminado.
Ahora, solo cuenta el número de ocurrencias de los divisores (números verdes) y escribe la descomposición en factores primos: $$$3500 = 2^{2} \cdot 5^{3} \cdot 7$$$.
Respuesta
La descomposición en factores primos es $$$3500 = 2^{2} \cdot 5^{3} \cdot 7$$$A.