Factorización prima de $$$3360$$$
Tu aportación
Encuentre la descomposición en factores primos de $$$3360$$$.
Solución
Comience con el número $$$2$$$.
Determina si $$$3360$$$ es divisible por $$$2$$$.
Es divisible, por lo tanto, divide $$$3360$$$ entre $$${\color{green}2}$$$: $$$\frac{3360}{2} = {\color{red}1680}$$$.
Determina si $$$1680$$$ es divisible por $$$2$$$.
Es divisible, por lo tanto, divide $$$1680$$$ entre $$${\color{green}2}$$$: $$$\frac{1680}{2} = {\color{red}840}$$$.
Determina si $$$840$$$ es divisible por $$$2$$$.
Es divisible, por lo tanto, divide $$$840$$$ entre $$${\color{green}2}$$$: $$$\frac{840}{2} = {\color{red}420}$$$.
Determina si $$$420$$$ es divisible por $$$2$$$.
Es divisible, por lo tanto, divide $$$420$$$ entre $$${\color{green}2}$$$: $$$\frac{420}{2} = {\color{red}210}$$$.
Determina si $$$210$$$ es divisible por $$$2$$$.
Es divisible, por lo tanto, divide $$$210$$$ entre $$${\color{green}2}$$$: $$$\frac{210}{2} = {\color{red}105}$$$.
Determina si $$$105$$$ es divisible por $$$2$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$3$$$.
Determina si $$$105$$$ es divisible por $$$3$$$.
Es divisible, por lo tanto, divide $$$105$$$ entre $$${\color{green}3}$$$: $$$\frac{105}{3} = {\color{red}35}$$$.
Determina si $$$35$$$ es divisible por $$$3$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$5$$$.
Determina si $$$35$$$ es divisible por $$$5$$$.
Es divisible, por lo tanto, divide $$$35$$$ entre $$${\color{green}5}$$$: $$$\frac{35}{5} = {\color{red}7}$$$.
El número primo $$${\color{green}7}$$$ no tiene otros factores que $$$1$$$ y $$${\color{green}7}$$$: $$$\frac{7}{7} = {\color{red}1}$$$.
Ya que hemos obtenido $$$1$$$, hemos terminado.
Ahora, solo cuenta el número de ocurrencias de los divisores (números verdes) y escribe la descomposición en factores primos: $$$3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7$$$.
Respuesta
La descomposición en factores primos es $$$3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7$$$A.