Descomposición en factores primos de $$$3312$$$

La calculadora encontrará la descomposición en factores primos de $$$3312$$$, mostrando los pasos.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla la descomposición en factores primos de $$$3312$$$.

Solución

Comience con el número $$$2$$$.

Determina si $$$3312$$$ es divisible por $$$2$$$.

Es divisible, por lo tanto, divide $$$3312$$$ entre $$${\color{green}2}$$$: $$$\frac{3312}{2} = {\color{red}1656}$$$.

Determina si $$$1656$$$ es divisible por $$$2$$$.

Es divisible, por lo tanto, divide $$$1656$$$ entre $$${\color{green}2}$$$: $$$\frac{1656}{2} = {\color{red}828}$$$.

Determina si $$$828$$$ es divisible por $$$2$$$.

Es divisible, por lo tanto, divide $$$828$$$ entre $$${\color{green}2}$$$: $$$\frac{828}{2} = {\color{red}414}$$$.

Determina si $$$414$$$ es divisible por $$$2$$$.

Es divisible, por lo tanto, divide $$$414$$$ entre $$${\color{green}2}$$$: $$$\frac{414}{2} = {\color{red}207}$$$.

Determina si $$$207$$$ es divisible por $$$2$$$.

Como no es divisible, pase al siguiente número primo.

El siguiente número primo es $$$3$$$.

Determina si $$$207$$$ es divisible por $$$3$$$.

Es divisible, por lo tanto, divide $$$207$$$ entre $$${\color{green}3}$$$: $$$\frac{207}{3} = {\color{red}69}$$$.

Determina si $$$69$$$ es divisible por $$$3$$$.

Es divisible, por lo tanto, divide $$$69$$$ entre $$${\color{green}3}$$$: $$$\frac{69}{3} = {\color{red}23}$$$.

El número primo $$${\color{green}23}$$$ no tiene otros divisores que $$$1$$$ y $$${\color{green}23}$$$: $$$\frac{23}{23} = {\color{red}1}$$$.

Dado que hemos obtenido $$$1$$$, hemos terminado.

Ahora, simplemente cuenta cuántas veces aparecen los divisores (números verdes) y escribe la descomposición en factores primos: $$$3312 = 2^{4} \cdot 3^{2} \cdot 23$$$.

Respuesta

La descomposición en factores primos es $$$3312 = 2^{4} \cdot 3^{2} \cdot 23$$$A.


Please try a new game Rotatly