Factorización prima de $$$1426$$$
Tu aportación
Encuentre la descomposición en factores primos de $$$1426$$$.
Solución
Comience con el número $$$2$$$.
Determina si $$$1426$$$ es divisible por $$$2$$$.
Es divisible, por lo tanto, divide $$$1426$$$ entre $$${\color{green}2}$$$: $$$\frac{1426}{2} = {\color{red}713}$$$.
Determina si $$$713$$$ es divisible por $$$2$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$3$$$.
Determina si $$$713$$$ es divisible por $$$3$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$5$$$.
Determina si $$$713$$$ es divisible por $$$5$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$7$$$.
Determina si $$$713$$$ es divisible por $$$7$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$11$$$.
Determina si $$$713$$$ es divisible por $$$11$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$13$$$.
Determina si $$$713$$$ es divisible por $$$13$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$17$$$.
Determina si $$$713$$$ es divisible por $$$17$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$19$$$.
Determina si $$$713$$$ es divisible por $$$19$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$23$$$.
Determina si $$$713$$$ es divisible por $$$23$$$.
Es divisible, por lo tanto, divide $$$713$$$ entre $$${\color{green}23}$$$: $$$\frac{713}{23} = {\color{red}31}$$$.
El número primo $$${\color{green}31}$$$ no tiene otros factores que $$$1$$$ y $$${\color{green}31}$$$: $$$\frac{31}{31} = {\color{red}1}$$$.
Ya que hemos obtenido $$$1$$$, hemos terminado.
Ahora, solo cuenta el número de ocurrencias de los divisores (números verdes) y escribe la descomposición en factores primos: $$$1426 = 2 \cdot 23 \cdot 31$$$.
Respuesta
La descomposición en factores primos es $$$1426 = 2 \cdot 23 \cdot 31$$$A.