Factorización prima de $$$1235$$$
Tu aportación
Encuentre la descomposición en factores primos de $$$1235$$$.
Solución
Comience con el número $$$2$$$.
Determina si $$$1235$$$ es divisible por $$$2$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$3$$$.
Determina si $$$1235$$$ es divisible por $$$3$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$5$$$.
Determina si $$$1235$$$ es divisible por $$$5$$$.
Es divisible, por lo tanto, divide $$$1235$$$ entre $$${\color{green}5}$$$: $$$\frac{1235}{5} = {\color{red}247}$$$.
Determina si $$$247$$$ es divisible por $$$5$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$7$$$.
Determina si $$$247$$$ es divisible por $$$7$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$11$$$.
Determina si $$$247$$$ es divisible por $$$11$$$.
Como no es divisible, pasa al siguiente número primo.
El siguiente número primo es $$$13$$$.
Determina si $$$247$$$ es divisible por $$$13$$$.
Es divisible, por lo tanto, divide $$$247$$$ entre $$${\color{green}13}$$$: $$$\frac{247}{13} = {\color{red}19}$$$.
El número primo $$${\color{green}19}$$$ no tiene otros factores que $$$1$$$ y $$${\color{green}19}$$$: $$$\frac{19}{19} = {\color{red}1}$$$.
Ya que hemos obtenido $$$1$$$, hemos terminado.
Ahora, solo cuenta el número de ocurrencias de los divisores (números verdes) y escribe la descomposición en factores primos: $$$1235 = 5 \cdot 13 \cdot 19$$$.
Respuesta
La descomposición en factores primos es $$$1235 = 5 \cdot 13 \cdot 19$$$A.