Calculadora de fracción a decimal
Convertir fracciones en decimales paso a paso
La calculadora convertirá la fracción dada (propia o impropia) o el número mixto en un decimal (posiblemente, periódico o repetido), mostrando los pasos.
Solution
Your input: convert $$$\frac{3000}{48}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{6}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\48&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}3&0&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$48$$$'s are in $$$3$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$3-48 \cdot 0 = 3 - 0= 3$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Violet}{0}&\phantom{0}&\phantom{6}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Violet}{3}& 0 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$48$$$'s are in $$$30$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$30-48 \cdot 0 = 30 - 0= 30$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Purple}{0}&\phantom{6}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}3&0& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{3}&\color{Purple}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$48$$$'s are in $$$300$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$300-48 \cdot 6 = 300 - 288= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{Blue}{6}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}3&0&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Blue}{3}&\color{Blue}{0}&\color{Blue}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$48$$$'s are in $$$120$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$120-48 \cdot 2 = 120 - 96= 24$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&6&\color{DeepPink}{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}3&0&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&\color{DeepPink}{1}&\color{DeepPink}{2}&\color{DeepPink}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&9&6&\phantom{.}\\\hline\phantom{lll}&&2&4&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$48$$$'s are in $$$240$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$240-48 \cdot 5 = 240 - 240= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&6&2&.&\color{GoldenRod}{5}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}3&0&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&9&6&\phantom{.}\\\hline\phantom{lll}&&\color{GoldenRod}{2}&\color{GoldenRod}{4}&\phantom{.}&\color{GoldenRod}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{3000}{48}=62.5 \overline{}$$$
Answer: $$$\frac{3000}{48}=62.5\overline{}$$$