Calculadora de fracción a decimal

Convertir fracciones en decimales paso a paso

La calculadora convertirá la fracción dada (propia o impropia) o el número mixto en un decimal (posiblemente, periódico o repetido), mostrando los pasos.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{3200}{44}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{7}&\phantom{2}&\phantom{.}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\44&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}3&2&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$44$$$'s are in $$$3$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$3-44 \cdot 0 = 3 - 0= 3$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}\color{DarkBlue}{0}&\phantom{0}&\phantom{7}&\phantom{2}&\phantom{.}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}\color{DarkBlue}{3}& 2 \downarrow&0&0&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&2&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$44$$$'s are in $$$32$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$32-44 \cdot 0 = 32 - 0= 32$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&\color{Purple}{0}&\phantom{7}&\phantom{2}&\phantom{.}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&2& 0 \downarrow&0&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{3}&\color{Purple}{2}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$44$$$'s are in $$$320$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$320-44 \cdot 7 = 320 - 308= 12$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&\color{Red}{7}&\phantom{2}&\phantom{.}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&2&0& 0 \downarrow&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Red}{3}&\color{Red}{2}&\color{Red}{0}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$44$$$'s are in $$$120$$$?

The answer is $$$2$$$.

Write down $$$2$$$ in the upper part of the table.

Now, $$$120-44 \cdot 2 = 120 - 88= 32$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&7&\color{Green}{2}&\phantom{.}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&2&0&0&.& 0 \downarrow&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&0&8&\phantom{.}\\\hline\phantom{lll}&\color{Green}{1}&\color{Green}{2}&\color{Green}{0}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&8&8&\phantom{.}\\\hline\phantom{lll}&&3&2&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$44$$$'s are in $$$320$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$320-44 \cdot 7 = 320 - 308= 12$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&7&2&.&\color{Peru}{7}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&2&0&0&.&0& 0 \downarrow&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&8&8&\phantom{.}\\\hline\phantom{lll}&&\color{Peru}{3}&\color{Peru}{2}&\phantom{.}&\color{Peru}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&0&\phantom{.}&8\\\hline\phantom{lll}&&&1&\phantom{.}&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$44$$$'s are in $$$120$$$?

The answer is $$$2$$$.

Write down $$$2$$$ in the upper part of the table.

Now, $$$120-44 \cdot 2 = 120 - 88= 32$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&7&2&.&7&\color{Brown}{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&2&0&0&.&0&0& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&8&8&\phantom{.}\\\hline\phantom{lll}&&3&2&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&0&\phantom{.}&8\\\hline\phantom{lll}&&&\color{Brown}{1}&\phantom{.}&\color{Brown}{2}&\color{Brown}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&8&\phantom{.}&8\\\hline\phantom{lll}&&&&&3&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 7

How many $$$44$$$'s are in $$$320$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$320-44 \cdot 7 = 320 - 308= 12$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&7&2&.&7&2&\color{Chocolate}{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&2&0&0&.&0&0&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&8&8&\phantom{.}\\\hline\phantom{lll}&&3&2&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&0&\phantom{.}&8\\\hline\phantom{lll}&&&1&\phantom{.}&2&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&8&\phantom{.}&8\\\hline\phantom{lll}&&&&&\color{Chocolate}{3}&\color{Chocolate}{2}&\color{Chocolate}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&0&8\\\hline\phantom{lll}&&&&&&1&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 8

How many $$$44$$$'s are in $$$120$$$?

The answer is $$$2$$$.

Write down $$$2$$$ in the upper part of the table.

Now, $$$120-44 \cdot 2 = 120 - 88= 32$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&7&2&.&7&2&7&\color{GoldenRod}{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&2&0&0&.&0&0&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&8&8&\phantom{.}\\\hline\phantom{lll}&&3&2&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&0&\phantom{.}&8\\\hline\phantom{lll}&&&1&\phantom{.}&2&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&8&\phantom{.}&8\\\hline\phantom{lll}&&&&&3&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&0&8\\\hline\phantom{lll}&&&&&&\color{GoldenRod}{1}&\color{GoldenRod}{2}&\color{GoldenRod}{0}\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&8&8\\\hline\phantom{lll}&&&&&&&3&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 9

How many $$$44$$$'s are in $$$320$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$320-44 \cdot 7 = 320 - 308= 12$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&7&2&.&7&2&7&2&\color{DarkMagenta}{7}&\phantom{2}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&2&0&0&.&0&0&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&8&8&\phantom{.}\\\hline\phantom{lll}&&3&2&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&0&\phantom{.}&8\\\hline\phantom{lll}&&&1&\phantom{.}&2&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&8&\phantom{.}&8\\\hline\phantom{lll}&&&&&3&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&0&8\\\hline\phantom{lll}&&&&&&1&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&8&8\\\hline\phantom{lll}&&&&&&&\color{DarkMagenta}{3}&\color{DarkMagenta}{2}&\color{DarkMagenta}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&3&0&8\\\hline\phantom{lll}&&&&&&&&1&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 10

How many $$$44$$$'s are in $$$120$$$?

The answer is $$$2$$$.

Write down $$$2$$$ in the upper part of the table.

Now, $$$120-44 \cdot 2 = 120 - 88= 32$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&7&2&.&7&2&7&2&7&\color{BlueViolet}{2}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&2&0&0&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&8&8&\phantom{.}\\\hline\phantom{lll}&&3&2&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&0&\phantom{.}&8\\\hline\phantom{lll}&&&1&\phantom{.}&2&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&8&\phantom{.}&8\\\hline\phantom{lll}&&&&&3&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&0&8\\\hline\phantom{lll}&&&&&&1&2&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&8&8\\\hline\phantom{lll}&&&&&&&3&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&3&0&8\\\hline\phantom{lll}&&&&&&&&\color{BlueViolet}{1}&\color{BlueViolet}{2}&\color{BlueViolet}{0}\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&8&8\\\hline\phantom{lll}&&&&&&&&&3&2\end{array}&\begin{array}{c}\end{array}\end{array}$$$

As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{3200}{44}=72.72 \overline{72}$$$

Answer: $$$\frac{3200}{44}=72.72\overline{72}$$$


Please try a new game Rotatly