Calculadora de fracción a decimal
Convertir fracciones en decimales paso a paso
La calculadora convertirá la fracción dada (propia o impropia) o el número mixto en un decimal (posiblemente, periódico o repetido), mostrando los pasos.
Solution
Your input: convert $$$\frac{600}{24}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{2}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\24&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}6&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$24$$$'s are in $$$6$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$6-24 \cdot 0 = 6 - 0= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\color{Blue}{0}&\phantom{2}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}\color{Blue}{6}& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$24$$$'s are in $$$60$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$60-24 \cdot 2 = 60 - 48= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&\color{Fuchsia}{2}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}6&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Fuchsia}{6}&\color{Fuchsia}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&8&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$24$$$'s are in $$$120$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$120-24 \cdot 5 = 120 - 120= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&2&\color{OrangeRed}{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}6&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&8&\phantom{.}\\\hline\phantom{lll}\color{OrangeRed}{1}&\color{OrangeRed}{2}&\color{OrangeRed}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$24$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-24 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&2&5&.&\color{Purple}{0}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}6&0&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&8&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&&\color{Purple}{0}&\phantom{.}&\color{Purple}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{600}{24}=25.0 \overline{}$$$
Answer: $$$\frac{600}{24}=25.0\overline{}$$$